Approximate Reliabilities for genomic evaluation: Application of the Interbull proposal to Spanish Holsteins data

N. Charfeddine, J.A. Jiménez-Montero and J. Pena

CONAFE, Spanish Holstein Association, 28340 Valdemoro, Spain

Email: nouredine.charfeddine@conafe.com

2018 Interbull Technical Workshop in Dubrovnik, Croatia

Introduction

- Nov'2012: Genomic evaluation with Random boosting (Jiménez-Montero et al. 2012).
- June 2014: GBLUP with polygenic effect (Charfeddine et al. 2013).
- Interbull working group (2017 Liu et al.): Proposal for approximate genomic reliability for national genomic evaluations.
- Interbull request to test proposal.

Genomic Evaluation in Spain

2-Step Procedure: Executed one a month

- Model: GBLUP with Polygenic effect (28 traits)
- Inputs: DRPs, Pedigree and genomic information
- Reliability: Two values of reliability are currently used

REL_{LHS} used for weighting DGV in blending process

 $b_{DGV} = \frac{Rel_{DGV}}{(1 - Rel_{DGV})} / \left[\frac{Rel_{DGV}}{1 - Rel_{DGV}} + \frac{Rel_{EBV}}{1 - Rel_{EBV}} \right]$

REL_{CV} used to calculate REL_{GEBV}=REL_{EBV}+REL_{gain}

Computing resources Intel Xenon Server :

- ✓ 2 Processors E5-2630v4 2.20 GHz (10 cores)
- ✓ 256 GB RAM
- ✓ 3 TB disc
- ✓ OS Windows Server 64 bit.

Software :

 ✓ GBLUP_rel program (Ismo Stranden and Esa Mäntysaari, Luke, FINLAND) (Version 0.23) Nov'2017

Test application to Spanish Data

Genotypes & phenotypes: June 2018 evaluation

Data:

- Reference population: EuroGenomics Holstein reference bulls 35,405 (3,184 ESP)
- 42,619 females & candidates
- Total: 78,024 genotyped animals & 42,981 SNP markers

Computing performance

Cumulative time and use of RAM memory

Using all animals	SNP_BLUP_Rel	GBLUP_rel with Polygenic effect
Time-Reading genotypes	15'02"	30'43"
Time-Inverting MME- 1 st step	31'02"	2h12'02"
Time-Calculating R ² - 2 ^{sd} Step	38'09"	2h22'01"
Total time	51'37"	3h00'09"
Peak RAM	47.9 GB	95.6 GB

Computing separately Reference bulls and candidates	SNP_BLUP_Rel
Time-Reading genotypes	2'12"
Time-Inverting MME and calculating R ² and BV for reference animals 1 st step	1h08'09"
Time- Reading MME inverse and Calculating R ² and BV for candidates 2 ^{sd} Step	42'14"
Total time	1h50'23"
Peak RAM	33.6 GB

Cross Validation Study

- Phenotypes from April 2018 Mace Evaluation
- Genotypes from June 2018 evaluation
 - 28,752 EuroGenomics reference bulls born before 2009
 - 538 Spanish bulls born between 2009-2012 as testing bulls
- Traits: 4 traits are selected:
 - Milk (h²=0.28)
 - Udder Depth (h²=0.30)
 - Locomotion (h²=0.12)
 - Days open (h²=0.043)

Validation results

Traits	h²	N _{bulls} ≥ 20 EDC	SNP BLUP	GBLUP with Polygenic effect
			Reliability _{cv}	Reliability _{cv}
Milk	0.280	533	0.72	0.72
Udder Depth	0.300	527	0.63	0.64
Locomotion	0.120	533	0.33	0.27
Days Open	0.043	361	0.58	0.58

Cross Validation Reliability is practically equal, except for Locomotion

%

Reliability averages calculated by matrix inversion for candidates

	% Polygenic effect	SNPBLUP	SNPBLUP considering polygenic effect (Liu et al. 2017)	GBLUP with Polygenic effect
Milk	15	0.90	0.76	0.72
Udder Depth	5	0.91	0.86	0.79
Locomotion	50	0.68	0.34	0.40
Days Open	5	0.86	0.82	0.71

$$Rel_{DGV} = (1 - k) * r_{IMP}^{2} * Rel_{SNP}$$

k: proportion of residual polygenic variance

Adjusting to realized reliability of DGV

GEBV validation test : $DRP=b_0+b_1*GEBV + e$ (Mäntysaari et al. 2010)

$$EDC_{DGV}^{Real} = f * EDC_{DGV}$$

Traits	h²	F_factor	EDC _{DGV}	EDC _{DGV} Real
Milk	0.280	1.00	43.7	43.7
Udder Depth	0.300	0.55	83.3	45.5
Locomotion	0.120	0.17	20.4	16.7
Days Open	0.043	0.65	343.5	224.6

Genomic EDC gain

 $EDC_{gain} = EDC^{Real}_{DGV} - EDC_{A22} \text{ (Liu et al. 2017)}$ $Rel_{Pedigree Index}$

Traits	EDC ^{Real} DGV	EDC _{A22}	EDC _{gain}
Milk	43.7	6.2	37.5
Udder Depth	45.5	6.1	39.4
Locomotion	16.7	14.6	2.1
Days Open	224.6	40.6	183.9

Final Reliability $EDC_{final} = EDC_{gain} + EDC_{EBV} \text{ (Liu et al. 2017)}$ $Rel_{final} = \frac{EDC_{final}}{EDC_{final} + \Lambda}$

Final Reliability calculated for candidates compared with current reliability

Traits	Rel _{final}	Rel _{GEBV}	
Milk	0.77	0.73	Current
Udder Depth	0.78	0.72	Reliability
Locomotion	0.34	0.43	Value
Days Open	0.71	0.65	

Conclusions

- SNP_BLUP_REL software is clearly faster and less RAM demanding.
- Cross validation reliabilities are virtually similar except for Locomotion.
- Expected reliabilities calculated for candidates by the new method are slightly higher than reliability calculated currently in our evaluation, except for Locomotion.

Acknowledgement:

To **Ismo Stranden** for his help and support with the SNP_BLUP_REL software.

To Haifa Benhajali and Zengting Liu for their supports

Thank you for your attention!

Confederación de Asociaciones de Frisona Española Ctra. de Andalucía km. 23,600 - Apd. Correos 31 28340 Valdemoro, Madrid Tlf.: +34 918 952 412 - www.conafe.com - conafe@conafe.com