

RP1: AN EXAMPLE OF REVERSE GENETICS APPROACH TO DESCRIBE COMMON RECESSIVE DEFECTS

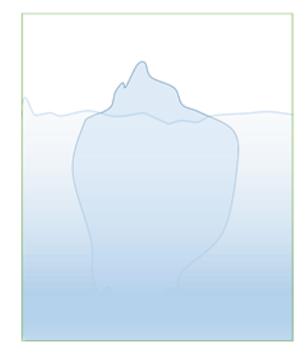
C. Grohs GABI, INRA, AgroParisTech,
Université Paris Saclay

Outbreaks of recessive defects as a consequence of animal selection

www.onab.fr

- * We all carry hundreds of recessive mutations (Some are deleterious)
- * Animal populations: few founders and strongly selected, conducing to low diversity and large genetic drifts
- ❖ Increase of frequency of some deleterious mutations:
- « the cost of domestication »
- → Creation of dedicated observatories (ONAB in France) to manage outbreaks: detection, collection, characterization

ONAB Stakeholders


HD genotyping, homozygosity mapping and sequencing to characterize genetic defects

- * Thousands of markers can be genotyped for 24 to 96 samples at the same time using ILLUMINA bead chips
- * Homozygosity mapping can be carried out with as few as 2-5 cases and leads to the identification of a 1-2 Mb candidate region
- * With lots of avalaible sequences, the causative variant can be found in a few months
- \diamond So far, 130 cattle defects have been characterized vs > 4900 in human

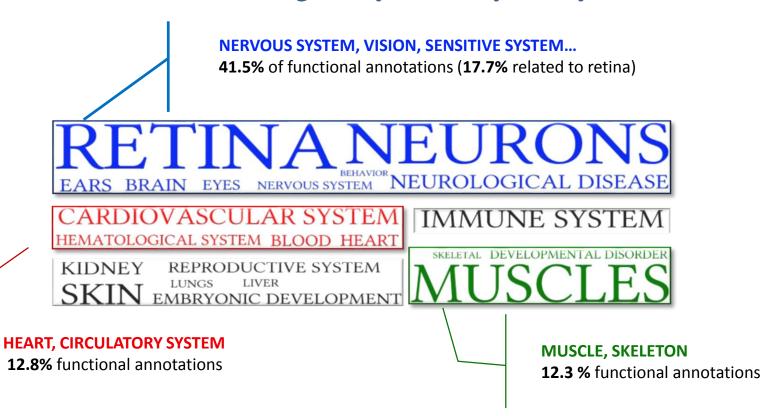
Some defects are lilely to be missed

- ❖ Embryonic mortality: Charlier *et al.* (2016) estimated by simulation that each cattle might carry 0.5 recessive Embryonic Lethality (EL) mutation
- Non specific symptoms: immune or metabolic defects e.g. diarrheas (like CDH)
- ❖ We have a lot of genotyping and sequencing data that permit a new strategy: reverse genetics to identify the underlying mutations

The tip of the iceberg

- ❖ We used the data of the « 1000 bull genomes » project, we investigated WGS from 15 bovine breeds (with >20 sequenced animals)
- ❖ Thousands of variants can be filtered with deleterious annotation, but they are rare and breed specific: due to their low frequency, mutations are not yet a danger for the population
- ❖ We investigated common variants (MAF >5%), shared by at least two breeds and with a deleterious annotation, because of their larger potential impact at the population level

Reverse genetics strategy


From the sequencing data of the main contributors of each breed:

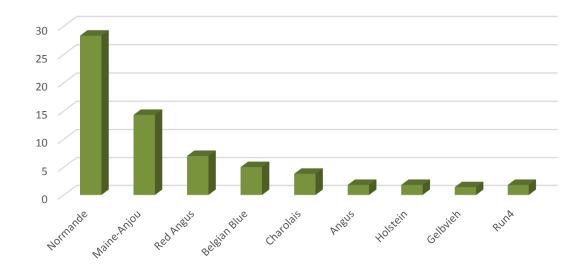
- * Annotate the deleterious mutations
- ❖ Include these potential variants on the EuroG10K custom chip
- * Characterize the mutation on the population genotyped for Genomic Selection
 - ✓ EL: Homozygote haplotypes deficiency
 - ✓ Effect on recorded traits: Imputation and GWAS
 - ✓ Specific monitoring of animals born from matings at risk
 - ✓ Embryos production, genotyping, animals monitoring

Results

- * 2,489 putative deleterious variants in 1,923 genes
- * Analysis of gene enrichment with Ingenuity Pathway Analysis showed:

Results

- ❖ To assess the phenotypic consequences of this phenomenon, we studied one mutation in RP1 gene
 - ✓ observed in many breeds
 - ✓ predicted to affect the retina

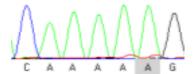

RESEARCH ARTICLE

Open Access

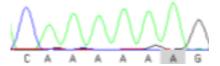
A reverse genetic approach identifies an ancestral frameshift mutation in *RP1* causing recessive progressive retinal degeneration in European cattle breeds

Pauline Michot^{1,2}, Sabine Chahory³, Andrew Marete^{1,4}, Cécile Grohs¹, Dimitri Dagios³, Elise Donzel³, Abdelhak Aboukadiri¹, Marie-Christine Deloche^{1,2}, Aurélie Allais-Bonnet^{2,5}, Matthieu Chambrial⁶, Sarah Barbey⁷, Lucie Genestout⁸, Mekki Boussaha¹, Coralie Danchin-Burge⁹, Sébastien Fritz^{1,2}, Didier Boichard¹ and Aurélien Capitan^{1,2*}

Frequency of the frameshift allele in %



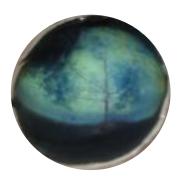
Retinis Pigmentosa-1 gene (RP1)

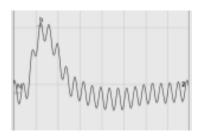

- ❖ This gene encodes a microtubule-associated protein expressed in the retina, playing a role in the differentiation and organization of the photoreceptors
- ❖ Involved in Retinitis Pigmentosa 1 Syndrome : Retinal dystrophy → progressive loss of rod and cone photoreceptors (night and daytime vision) resulting in blindness after 4 years of age
- ❖ Well described in human and mouse
- * No clear economic impact but animal welfare is addressed

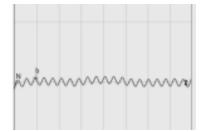
Addition of A in a stretch of 5A

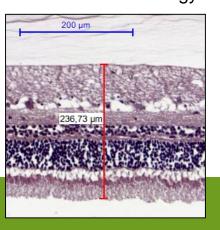
Mut/Mut

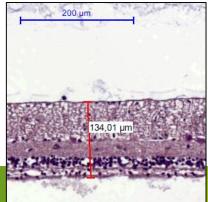
Clinical and functional analysis


- Phenotyping of 23 cows from the INRA experimental farm, of the 3 possible genotypes (blind test)
- Ocular examination
 - ✓ Threat response
 - ✓ Pupillary light reflexes
 - ✓ Eye fundus
 - ✓ Electroretinography test
- Histological analysis of the retina


Affected


Eyes fundus (n=6)




Electroretinograms (n=2)

Histology of the retinis (n=6)

- Current Resources (technology, data and strategy) allow to identify recessive abnormalities without a described phenotype
- * Hundreds of harmful mutations can easily be detected in cattle, including mutations that do not affect production traits,
- ...but it is still essential to validate the effect of an identified mutation
- ❖ Finally, we worked on some mutations, but hundreds of them remain to be investigated, especially in breeds that are not common in France.
- →It would be useful to collaborate in a "phenotyping network"

Thank you for your attention

