

New approach to calculate inbreeding effective population size from runs of homozygosity

Gregor Gorjanc, John Hickey & Ino Curik

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

03 "Optimization of a genomic breeding program for small sized cattle populations (with Interbull)" Elafiti 4 on Monday 27 August 2018 from 08:30 - 12:30 \rightarrow 12:15 Croatia – Slovenia bilateral scientific projects: MZO & ARRS "Estimation of effective population size and inbreeding from high-throughput genomic information", 2012/2013

Effective population size (NeF_{ROH})→ new idea !

Aims of the study

- To present theoretical background/concept behind "new" inbreeding effective population size - NeF_{ROH}
- To present NeF_{ROH} calculated/obtained in empirical cattle populations

To analyse behaviour of $\mathsf{NeF}_{\mathsf{ROH}}$ in computer simulations

The effective population size (Ne) of a real population X is the size of a hypothetical ideal population (Wright-Fisher) that will result in the <u>*same amount of genetic drift</u> as in the real (actual) population considered.

Effective inbreeding population size (N_{eF}): *same change in inbreeding level*

Effective variance population size (N_{eV}): *same change in allele frequencies Effective eigenvalue population size (N_{eE}): *same long term rate at which genetic variants are lost Effective linkage disequilibrium population size (N_{eLD}): *same change in gametic phase/linkage disequilibrium

$\Delta F=1/(2Ne) \rightarrow Ne = 1/(2\Delta F)$

McQuillan et. al., 2008 / 1 cM ≈ 1 Mb /

Setting up the basic population based on ROH length!

Relative measure with respect to the base generation

Realized (accumulated) inbreeding during t generations

 $\mathbf{F_{ROH>10Mb}} = \mathbf{0.05} \rightarrow \Sigma^{5g} \Delta F \rightarrow \Delta F = 2\Sigma^{5g} \Delta F / 5 = 0.01 \rightarrow Ne_{FROH>10Mb} = 50$

$$F_{ROH}v = F_{ROH} \begin{pmatrix} g - 25 \rightarrow L2.00Mb \\ g - 24 \rightarrow L2.08Mb \\ g - 23 \rightarrow L2.17Mb \\ \dots \\ g - 2 \rightarrow L25.00Mb \end{pmatrix}$$

 $F_{\text{ROH>2Mb-5Mb}} = 0.25 - 0.10 \rightarrow {}_{25g} \Sigma^{10g} \Delta F \rightarrow \Delta F = {}_{25g} \Sigma^{10g} \Delta F / 15 = 0.01$ $\rightarrow \text{Ne}_{\text{FROH>2Mb-5Mb}} = 50$

$$Ne_{FROH}v = Ne_{FROH} \begin{pmatrix} F_{ROHg-25} - F_{ROHg-24} \\ F_{ROHg-24} - F_{ROHg-23} \\ F_{ROHg-23} - F_{ROHg-22} \\ \dots \\ F_{ROHg-3} - F_{ROHg-2} \end{pmatrix}$$

2 Empirical estimates of Ne_{FROH} in cattle populations

Breed	Ν	L _{ROH} /GB	F _{ROH}	Ne _{FROH}	Source
Italian Holstein	2093	8/6.25	0.051	61	Marras et al., 2015
Swiss Holstein	2568	5/10	0.053	94	Signer-Hasler et al., 2017
Italian Brown	749	8/6.25	0.068	46	Marras et al., 2015
Brown Swiss (AUT)	304	8/6.25	0.074	42	Ferenčaković et al., 2013
Brown Swiss	281	5/10	0.084	60	Signer-Hasler et al., 2017
Fleckvieh (AUT)	502	8/6.25	0.019	165	Ferenčaković et al., 2013
Italian Simmental	479	8/6.25	0.015	208	Marras et al., 2015
Swiss Flechvieh	547	5/10	0.027	185	Signer-Hasler et al., 2017

2 Empirical estimates of Ne_{FROH} in cattle populations

Breed	Ν	L _{ROH} /GB	F _{ROH}	Ne _{FROH}	Source
Norwegian Red	499	8/6.25	0.035	90	Ferenčaković et al., 2013
Tyrol Grey (AUT)	117	8/6.25	0.036	87	Ferenčaković et al., 2013
Piedmontese (ITA)	364	8/6.25	0.007	446	Marras et al., 2015
Marchigiana (ITA)	410	8/6.25	0.031	101	Marras et al., 2015
Pinzgauer (AUT)	118	8/6.25	0.027	116	Ferenčaković et al., 2013
Reggiana (ITA)	168	4/12.5	0.035	179	Mastrangelo et al., 2017
Nellore (BRA)	1278	8/6.25	0.014	223	Zavarez et al., 2015
Gyr (BRA)	2908	8/6.25	0.037	85	Peripoli et al., 2018

Unfortunately, in the first simulation a bug was found ...

bug corrected ... but ... computer simulations still in progress !

Related methods

Genet. Sel. Evol. 40 (2008) 359–378 © INRA, EDP Sciences, 2008 DOI: 10.1051/gse:2008008 Available online at: www.gse-journal.org

Original article

Individual increase in inbreeding allows estimating effective sizes from pedigrees

Juan Pablo GUTIÉRREZ^{1*}, Isabel CERVANTES¹, Antonio MOLINA², Mercedes VALERA³, Félix GOYACHE⁴

$$\Delta F_i = 1 - \sqrt[t_i]{1 - F_i}$$

$$\Delta F_i^* = 1 - \sqrt[t_i - 1]{1 - F_i}$$

Conclusion & future plans

- 1. Theoretical explanation for NeF_{ROH} calculation is logical!
- 2. Empirical estimates of NeF_{ROH} calculated in several cattle populations are reasonable.
- 3. Confirmation of accuracy and bias of the proposed method as well as validation of assumptions made is required.
- 4. Need for the comparison with other methods.

Acknowledgments

Croatia – Slovenia bilateral scientific projects: MZO & ARRS "Estimation of effective population size and inbreeding from high-throughput genomic information", 2012/2013

Project Reference: 692249 Web site: http://mendthegap.agr.hr E-mail: mendthegap@agr.hr

Thank you for your attention !

Questions, good suggestions & provocative chalenging comments are desirable!