

69th Annual Meeting of the European Federation of Animal Science Session 12, August 27th 2018, Dubrovnik

The impact of genomic selection on genetic diversity and genetic gain in French dairy cattle breeds

Anna-Charlotte Doublet^{1,2}, Pascal Croiseau¹, Sébastien Fritz^{1,2}, Chris Hozé^{1,2}, Alexis Michenet^{1,2}, Denis Laloë¹, Gwendal Restoux¹

¹ GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France ² ALLICE, Paris, France

This study was conducted in the frame of the GDivSelGen project, funded by INRA (SELGEN Metaprogram, Paris, France)

Context – From genetic to genomic selection in dairy cattle in France

Genomic selection in dairy cattle breeds \Rightarrow **New breeding schemes**

Before 2010: Genetic selection	2010-2012: Transition phase	Since 2012: Genomic selection
Progeny testing Sires of bulls ≈ 6 yo Dams of bulls ≈ 3 yo in farms	Intermediate situation	Genomic evaluation Sires of bulls ≈ 2 yo Dams of bulls ≈ 2 yo in donor stations

Shorter generation intervals

Higher annual genetic gain

Risk of accelerated loss of diversity

Consequences of a loss of genetic diversity

Loss of additive genetic variance \rightarrow Loss of potential genetic gain Loss of overall genetic diversity \rightarrow Loss of adaptive potential Inbreeding depression \rightarrow Detrimental effects on fitness traits

Material

Marketed sires, genotyped in France from 3 French dairy cattle breeds

Montbéliarde National breed

Normande <u>National</u> breed

Holstein International breed

Evolution of genetic diversity

Pedigree data: Inbreeding

50K genotyping data (Runs Of Homozygosity): Inbreeding ROH length

Evolution of genetic gain Total Merit Index

Combining production traits, functional traits and type traits

Display of results

Display of results

ROH length

Runs Of Homozygosity (ROH)

= long genomic segments consisting of consecutive homozygous SNPs
 ≈ autozygous segments of the genome (IBD)

 $F_{\text{ROH}} = \frac{\text{Total length of the ROH of an individual}}{\text{Total length of the genome covered by SNPs}}$

F_{ROH}

McQuillan *et al*, 2008, adjusted as done by Doekes *et al*, 2018

Shorter ROHs = older autozygosity Longer ROHs = more recent autozygosity

Detected with PLINK (with 50K genotyping data)

- Minimal length = 1Mb
- Minimal number of SNPs per ROH = 15 SNPs
- Sliding window = 15 SNPs
- Minimal SNP density: 1 SNP / 75 kb

F_{ped}

• Maximum gap: 150 kb

Genetic gain TMI

F_{ROH}

 $F_{\rm ped}$

** *p*-value < 0.001 * 0.001 < *p*-value < 0.05 ns *p*-value > 0.05

Genetic gain

ROH length

Relative changes $= \frac{a_1 - b_1}{|b_1|}$

** p-value < 0.001
* 0.001 < p-value < 0.05
ns p-value > 0.05

Dueed	Genetic gain	Genetic dive	Genetic diversity		
Breed	ТМІ	F _{ped}	F _{ROH}	ROH length	
Montbéliarde	0.69 **	0.38 ns	-0.49 ns	-0.66 ns	
Normande	0.71 *	2.86 ns	-0.12 ns	-18.33 ns	
Holstein	0.38 **	4.75 **	5.65 **	10.65 **	

Relative changes = $\frac{a_1 - b_1}{|b_1|}$

** p-value < 0.001
* 0.001 < p-value < 0.05
ns p-value > 0.05

Breed	Genetic gain	Genetic dive	rsity <i>E</i> ncu	ROH length
		и реа	r KOH	
Montbéliarde	0.69 **	0.38 ns	-0.49 ns	-0.66 ns
Normande	0.71 *	2.86 ns	-0.12 ns	-18.33 ns
Holstein	0.38 **	4.75 **	5.65 **	10.65 **

Increased annual genetic gain for all breeds

Relative changes = $\frac{a_1 - b_1}{|b_1|}$

** p-value < 0.001
* 0.001 < p-value < 0.05
ns p-value > 0.05

Brood	Genetic gain	Genetic	diversity	POH longth
Dieeu	ΤΜΙ	TMI F _{ped}		
Montbéliarde	0.69 **	0.38 ns	-0.49 ns	-0.66 ns
Normande	0.71 *	2.86 ns	-0.12 ns	-18.33 ns
Holstein	0.38 **	4.75 **	5.65 **	10.65 **

Increase of the inbreeding rate in Holstein, not in Montbéliarde and Normande

 \rightarrow Results are consistent between pedigree and genomic data

Relative changes = $\frac{a_1 - b_1}{|b_1|}$

** p-value < 0.001
* 0.001 < p-value < 0.05
ns p-value > 0.05

Genetic diversity

Breed	Genetic gain TMI	F _{ped}	F _{ROH}	ROH length
Montbéliarde	0.69 **	0.38 ns	-0.49 ns	-0.66 ns
Normande	0.71 *	2.86 ns	-0.12 ns	-18.33 ns
Holstein	0.38 **	4.75 **	5.65 **	10.65 **

 Higher annual increase of the length of ROH in Holstein, not in Montbéliarde and Normande
 → Faster increase of recent inbreeding in Holstein

In Holstein, in France: faster increase in recent inbreeding + accelerated loss of diversity (Forutan *et al*, 2018; Doekes *et al*, 2018)

How to explain the difference between the 3 breeds?

1) Improved balance of the use of bulls in Montbéliarde and Normande but not in Holstein (already good before)

In Holstein, in France: faster increase in recent inbreeding + accelerated loss of diversity (Forutan *et al*, 2018; Doekes *et al*, 2018)

How to explain the difference between the 3 breeds?

 Improved balance of the use of bulls in Montbéliarde and Normande but not in Holstein (already good before)

Sire use disequilibrium index:

In Holstein, in France: faster increase in recent inbreeding + accelerated loss of diversity (Forutan et al, 2018; Doekes et al, 2018)

How to explain the difference between the 3 breeds?

Improved balance of the use of bulls in Montbéliarde and Normande but not in Holstein 1) (already good before)

Sire 3

Sire use disequilibrium index:

12

In Holstein, in France: faster increase in recent inbreeding + accelerated loss of diversity (Forutan *et al*, 2018; Doekes *et al*, 2018)

How to explain the difference between the 3 breeds?

- 1) Improved balance of the use of bulls in Montbéliarde and Normande but not in Holstein (already good before)
- 2) Higher increase in the effective number of sires in Montbéliarde and Normande (depending on their contribution to AI for a year):
 - Montbéliarde x 3
 - Normande x 2.5
 - Holstein x 2

Conclusion and perspectives

Genomic selection = new breeding schemes in France

In national breeds (Montbéliarde and Normande): accelerated annual genetic gain without accelerated loss of genetic diversity

In international breed (Holstein): detrimental effect on genetic diversity

It could be the consequence of the way sires are selected and marketed (turn over, proportion and number of semen doses per sire, etc.)

Perspectives:

Relevance of genomic measures of diversity Analysis of the structure and repartition of ROHs Impact of the use of foreign sires Impact of national VS international breed management

Conclusion and perspectives

Genomic selection = new breeding schemes in France

In national breeds (Montbéliarde and Normande): accelerated annual genetic gain without accelerated loss of genetic diversity

In international breed (Holstein): detrimental effect on genetic diversity

It could be the consequence of the way sires are selected and marketed (turn over, proportion and number of semen doses per sire, etc.)

Perspectives:

Relevance of genomic measures of diversity Analysis of the structure and repartition of ROHs Impact of the use of foreign sires Impact of national VS international breed management

Thank you for your attention!

SUPPLEMENTARY SLIDES

Number of animals and SNPs

Breed	Number of animals born between 2005 and 2010	Number of animals born between 2012 and 2015	Number of SNPs
Montbéliarde	826	420	39,992
Normande	666	347	40,135
Holstein	3440	1248	41,377

 F_{ped}

	F _{ped}					
Breed	b_1	Standard error	<i>a</i> ₁	Standard error	Relative change	
Montbéliarde	1.067E-03	3.423E-04	1.475E-03	7.901E-04	0.382 ns	
Normande	2.991E-04	3.277E-04	1.153E-03	4.233E-04	2.856 ns	
Holstein	7.783E-04	1.415E-04	4.472E-03	3.864E-04	4.746 **	

ROH length

F_{ROH}

Genetic gain

	F _{ped}	F _{ROH}	ROH length	Genetic gain
	F _{ped}			
	Montbéliarde	Ν	ormande	Holstein
0.075		0.075		5
0.050 E				
0.025		0.025	0.02	5
0.000	2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Birth year	0.000 2015 2005 2006 2007 2008 2	0.00 2009 2010 2011 2012 2013 2014 2015 Birth year	0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Birth year

Genome length

Breed	Length of genome covered	Length of genome covered by
	by SNPs	SNPs minus gaps > 150kb
Montbéliarde	2 499 500 045 bp	1 919 314 607 bp
Normande	2 499 403 287 bp	1 919 653 803 bp
Holstein	2 499 418 974 bp	1 959 205 780 bp

ROH length

F_{ROH}

$F_{\rm ROH}$

F_{ped}

	F _{ROH}					
Breed	b_1	Standard error	<i>a</i> ₁	Standard error	Relative change	
Montbéliarde	1.766E-03	3.935E-04	9.089E-04	8.577E-04	-0.485 ns	
Normande	1.032E-03	4.021E-04	9.054E-04	7.744E-04	-0.122 ns	
Holstein	8.730E-04	1.986E-04	5.802E-03	5.218E-04	5.646 **	

F_{ROH}

 $F_{\rm ped}$

ROH length

F_{ROH}

Genetic gain

ROH length

 $F_{\rm ped}$

	Number of ROH per individual					
Breed	b_1	Standard error	<i>a</i> ₁	Standard error	Relative change	
Montbéliarde	5.447E+00	2.070E+00	1.881E+00	3.859E+00	-0.655 ns	
Normande	-1.448E-01	2.146E+00	-2.800E+00	4.052E+00	-18.337 ns	
Holstein	9.838E-01	1.120E+00	1.146E+01	2.550E+00	10.649 **	

 $F_{\rm ROH}$

<i>F</i> _{ROH}	ROH length	
-------------------------	------------	--

ROH length

 \textit{F}_{ped}

 $F_{\rm ped}$

Total Merit Index (ISU): centered around 100 with a 20 points variability

F_{ROH}

Breed	Milk production	Morphology	Reproduction	Udder health	Longevity	Milking speed
Montbéliarde	45%	12.5%	18%	14.5%	5%	5%
Normande	40%	18%	15.5%	18.5%	5%	3%
Holstein	35%	15%	22%	18%	5%	5%

ROH length

Genetic gain

Genetic gain

 $F_{\rm ped}$

Breed	ISU (Total Merit Index)							
	b_1	Standard error	<i>a</i> 1	Standard error	Relative change			
Montbéliarde	3.928	0.355	6.627	0.645	0.687 **			
Normande	3.411	0.411	5.815	0.612	0.705 *			
Holstein	7.966	0.200	11.020	0.351	0.383 **			

 $F_{\rm ROH}$

F_{ROH} ROH length

Genetic gain

 $F_{\rm ped}$

Sire's use disequilibrium index

Sire's use disequilibrium index =
$$1 - \frac{\text{Observed equilibrium}}{\text{Expected equilibrium}}$$

Observed equilibrium = $1 - \sum_{i=1}^{\text{Number of sires } n} \left(\frac{\text{Number of offsprings for sire } i}{\text{Total number of offsprings for the } n \text{ sires}}\right)^2$
Expected equilibrium = $1 - \sum_{i=1}^{\text{Number of sires } n} \left(\frac{\text{Mean number of offsprings per sire}}{\text{Total number of offsprings for the } n \text{ sires}}\right)^2$