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) What is Genomic Pre-Selection (GPS)?

suumy,

- GPS is when we choose only a subset of genotyped candidates for phenotyping.

- GPS alters the distributions of true BV for phenotyped individuals in our GE systems

- Distributions of true BV for GPS groups of individuals have shifted means and reduced
variances relative to the full normal distribution for all candidates prior to selection

- GBLUP can account for GPS effects on true BV distributions, if the genotypes of all
selection candidates are included

- GBLUP can therefore generate unbiased GEBV

NOTE: my “GBLUP” here can include Multi-step (G) and Single Step (H) systems,
animal-based and SNP-based parameterizations: G-BLUP, H-BLUP, SNP-BLURP, ...



I GPS effects In PBLUP systems

- PBLUP systems do not include genotypes, but phenotypes are eventually recorded, and

the phenotypes include expression of the GPS effects.

- Modified distributions can be estimated for GPS groups of individuals from phenotypes

- We have a problem, however, that PBLUP doesn’t know if observed distributional
changes (e.qg. in elevated phenotypic means) were due to GPS of the sires, or due to
other factors in the model, like herd environment effects, genetic value of the sire’s
mates, Mendelian sampling of the daughters, PA vs MS of the sire, etc.

- The EBV of a GPS sire, his mates and progeny from

we do not, in some way, fully direct sire GPS effects
these other individuals and environmental factors inc

NOTE: my PBLUP here refers to Pedigree-B

PBLUP are probably all biased if
into the sire’s EBV, and away from
uded in the model

_UP with no genotypes



So why use PBLUP In MACE?

- If Instead of using PBLUP, we fed unbiased national GEBV into MACE, and then MACE
Into national GBLUP, we would repeatedly double-count the genomic information

- Although national EBV are biased they are also genomics-free, which allows the use of
MACE proofs as input for national GEBV without double-counting the genotypes

- A Working Group was established in 2018 to work on solutions for reducing EBV bias
while continuing to exclude individual genotype effects in a better future MACE service

> First report from the future MACE WG, 2019 Interbull Meeting in Cincinnati, USA
> Proposed model for Future MACE, 2022 Interbull Meeting in Montreal, Canada
> Implementing a GPS-MACE service, 2023 Interbull Workshop in Rome, Italy
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Key Reports and Activities

JDS: National EBV are biased w/o genotypes used for GPS (Patry and Ducrocq, 2011)

JDS: MACE proofs include the national EBV bias (Patry et al, 2013)

- Interbull workshop: Adapting MACE for GPS (Slovenia, 2017 Feb)

Interbull Technical Committee and Working Groups: tasked to quantify GPS effects and

simulate GPS data to test future MACE approaches (Estonia, 2017 Auq)

- Interbull meeting: Modifying MACE for GPS (USA, 2019 Jun)

- Interbull webinar: Genomic-free input for MACE (2021 Feb)

nterbu

nterbu

meeting. Genetic regressions for GPS in MACE (Canada, 2022 May)
workshop: Plans for implementing GPS-MACE (ltaly, 2023 Feb)



Genomic-free input for MACE

Slide from 2021 Interbull Webinar

> Trade-off between no GPS-bias versus genomic-free

> "Genomic” preselection bias is mainly an early proof
problem, which decreases with more daughters

> Foreign-proof” preselection bias is an old, similar problem

»Future MACE working group seeks to reduce GPS bias
with better (MS) model assumptions, focusing on both:

- Improved MACE modeling\+fbetter MACE input data
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Today’'s Presentations

1. Selection bias is generally not a big concern if all data used for selection can
be properly included in a Closed evaluation system (I. Jibrila)

> National Single-step without integration of foreign data
> Breeding Company systems based on closed-line breeding
2. Open system data exchange/integration adds complexity (P. Sullivan)
> Single-step with MACE integration for foreign sires
> MACE with integration of national EBV without genotypes
> GMACE, Intergenomics and SNP-MACE

3. Software tools and modeling approaches are available (I. Strandén)
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Part 1. Impact of genomic preselection on accuracy and bias In

subsequent single-step evaluation of preselected animals
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Data

Simulated breeding programme
« Single-trait breeding goal
« 15 recent generations with selection
« Pedigree: generations 0 to 15
« Genotypes: generations 13 to 15

« Phenotypes: generations 11 to 15
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Implementation of genomic preselection

-

Genomic
preselection
\_

-

NO
preselection
\_
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-

High
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preselection
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Very high
preselection

~
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Single-step evaluation used to preselect!

->

->

-> Control scenario

10% of males, 15% of females
preselected

5% of males, 12.5% of females
preselected
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Subsequent evaluation

Both PBLUP and ssGBLUP implemented

. Y= K+ animal;

- H' =A71 +

+ei

0 0
[o (0.9G + 0.1A,,)"1 — A;;]

. All information on preculled animals discarded

Mig€BLUP
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Measuring the impact of preselection on the subsequent evaluation

- Accuracy (rTBV,GEBV)

- Level bias (mean TBV — mean GEBV)

- Dispersion bias (brgy gesv)
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Summary of results from the Part 1

Accuracy always reduced with preselection

No bias with single-step, regardless of preselection scenario

Selection
Evolution

Jibrila et al. Genet Sel Evol (2020) 52:42 G ti
https://doi.org/10.1186/512711-020-00562-6 H}} enetics
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Part 2: Information needed In subsequent single-step evaluations to

prevent genomic preselection bias
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Implementation of genomic preselection

Same as In partl

Exception: now only high genomic preselection scenario implemented
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Subsequent evaluation

Nine scenarios based on sources and amounts of genomic information:

Culled sibs of parents of
selection candidates (G14)

Preculled animals
(G15) (G15)

N~ 7

Parents of selection
candidates (G14)

N 7

Grandparents of the selection
candidates and their sibs (G13)

Preselected animals
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Subsequent evaluation

Four scenarios based on sources and amounts of phenotypic information:

Preselected animals (G15)

at preselection

preselection

With both genotypes and phenotypes

With phenotypes but no genotypes at

sscee w\?
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Summary of results from Part 2

- To prevent preselection bias In subseguent single-step evaluations, the

following are needed:
o Reference data used at preselection stage

« Genotypes and of preselected animals

Genotypes of preculled animals only needed If their parents are not genotyped!

ORIGINAL ARTICLE

Avoiding preselection bias in subsequent single-step genomic
BLUP evaluations of genomically preselected animals

sesee :‘
Ibrahim Jibrila | Jeremie Vandenplas“® | Jan ten Napel | Roel F. Veerkamp = | C Rv

Mario P. L. Calus ‘= Codperatie 19
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Part 3: Single-step prevents preselection bias In subsequent evaluation by

correctly estimating Mendelian sampling terms of preselected animals
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Averages of Mendelian sampling terms

. A B C D E MST_type
| . Estimated
o True
A =» Subsequent pedigree eval., Ctrl scenario
-~ 0-4- B =» Subsequent single-step eval., Ctrl scenario
0p)
= C => Initial pedigree eval., GPS scenario
o
= D = Initial single-step eval., GPS scenario
E =» Subsequent pedigree eval., GPS scenario
F =» Subsequent single-step eval., GPS scenario
0.0-
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Variancesof Mendelian sampling terms

A B C D E F MST type

- Estimated
 True

A =» Subsequent pedigree eval., Ctrl scenario

| B =» Subsequent single-step eval., Ctrl scenario
C =>» Initial pedigree eval., GPS scenario
5- D =» Initial single-step eval., GPS scenario
E =» Subsequent pedigree eval., GPS scenario
I I F =» Subsequent single-step eval., GPS scenario
0.0- = _ mEn estes w\Y
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Distributions of Mendelian sampling tems

True MST, GPS scenario
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Distributions of Mendelian sampling tems

Est. MST, Subsequent pedigree eval., Ctrl scenario
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Distributions of Mendelian sampling tems
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Distributions of Mendelian sampling tems
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Take home message

Preselection bias is not an issue in single-step evaluations!

BETTER COWS > BETTER LIFE

27



Acknowledgements

My PhD sponsors
My other PhD supervisors

" prof. dr. ir. Roel Veerkamp [ II !
" dr.ir. Jan ten Napel k |§ - _

SREE n
= dr. ir. Jeremie Vandenplas "1l

CRV.D
w BETTER COWS > BETTER LIFE

UNIVERSITY & RESEARCH

"H BTN
| WAGENINGEN

VGEN o0 T N
HENDRIX GENETICS
WAGENINGEN % oplgs PROGORErS'SSINVF!IE‘S

EEEEEEEEEEE RESEARLH




enomic preselection In single-step evaluation

Ibrahim Jibrila, Mario Calus, Gerben de Jong
Interbull Technical Workshop, 15/03/2023, Rome

whe  NNY

CRV

Cooperatie

BETTER COWS > BETTER LIFE

WAGENINGEN

LUNIVERSITY & RESEARLH




Using genetic regressions for
genomic preselection effects

Pete Sullivan (Lactanet, Canada) Lactané't';:} o
Esa Mantysaari  (Luke, Finland) Luke

+
Rciieihed

Gerben dedong (CRV u.a., Netherlands) &ﬁy

adperatie



&) GPS-Al'bulls in MACE

- MACE uses biased input EBV, generated without genotypes
and therefore ignoring Genomic Pre-Selection (GPS) effects on
the Mendelian sampling distributions of most recent Al bulls

Objectives:

1. Develop a GPS-MACE international model that accounts for
these GPS effects without requiring any genotypes, intending to

2. Reduce bias in future MACE proofs that can still be used as
phenotypic input data for national genomic evaluation systems



& ) Genetic regressions for GPS

- We wish to estimate selection effects on GPS groups of Al bulls.

 Pre-selection groups (CouSel) based on Country of registration
> 840+USA are combined, DNK+FIN+SWE are combined as DFS

- To avoid small groups, we fit regressions on YEAR by CouSe|
> Estimating trends in GPS (YEAR as a covariable) for each COUNTRY

- To allow non-linearity, to reduce fluctuating estimates over time, and
for stable estimates on most recent bulls, we use 3-year knotted
linear slopes (in parameter vector s) with the following assumptions:



Genetic regressions for GPS

- Assumptions about GPS of dairy sires:
1. GPS level = x and trend=0 in most recent time period (2014-2017)
2. GPS level = 0 and trend=0 prior to the start of GPS (1980-2008)

3. GPS trends during intermediate periods (2009-2011 and 2012-2014)
capture evolving GPS intensities, as the levels go from 0O to X

4. x = 0 for smallest populations where x cannot be estimated reliably

- Allows for different timings of GPS implementation, and different
yearly intensities of pre-selection, for each trait-country combination

- National input data drive all GPS estimations and EBV adjustments



GPS-MACE model

‘ GPS effects ‘
- Current MACE: y = u+Q1g+a+e/ ‘/

- Current MACE: y=pu+ (Q:g+PA)+ (MS) + e
« GPS-MACE: y=p+(Qg+PA)+(Qzs+m) +e

™~

‘ GPS effects

MS=Q,s, m=0



GPS-MACE equations

X DX X DZ X DZQ, m X'Dy
ZDX ZDZ+WQ®G;! Z DZQ, Q.8 + al =| Z'Dy
Q, Z' DX Q, ZDZ Q, Z DZQ, H{cI S Q, Z'Dy

Covariables in s have Incidence Matrix: ZQ,
We can add a Ridge-regression factor: ¢

EBV=fi+Q:8+4a +Q,$



INTERBUL
Al |

MACE (Example 3-country model)

INTEGER An Cou

REAL Y D # Y=drp D=edc*R-inv
MISSING -9999.0

DATAFILE st-am.data

PEDIGREE G am+p 1

PARFILE st-am.para # V(reg)=G,
R=1

TABLEFILE identity_matrix
TABLEINDEX Cou

MODEL
Y = Cou G(t1 t2 t3| An) ! WEIGHT=D

GPS-MACE (fixed regressions)

INTEGER An Cou

REAL Y D # Y=drp D=edc*R-
inv

MISSING -9999.0

DATAFILE st-am.data
PEDIGREE G am+p 1

PARFILE st-am.para # V(reg)=G,
R=1

TABLEFILE identity_matrix
TABLEINDEX Cou

(#2 regressions per country =6 )
total

REGMATRIX FIXED yc FIRST=2
LAST=7

MIX99 Instructions for GPS-MACE

GPS-MACE (ridge regression: c=100)

INTEGER An Cou

REAL Y D # Y=drp D=edc*R-inv
MISSING -9999.0

DATAFILE st-am.data

PEDIGREE G am+p 1

PARFILE st-am.para # V(reg)=G,
R=1

TABLEFILE identity_matrix
TABLEINDEX Cou

/# 2 regressions per country = 6 total)
REGMATRIX RANDOM yc FIRST=2
LAST=7

REGFILE ZQ2_incidence

\REGFILE ZQ2_incidence Y

MODEL
Y = Cou G(t1 t2 t3| An) !
WEIGHT=D

REGPARFILE s_ridge_100
o /

MODEL
Y = Cou G(t1 t2 t3| An) ! WEIGHT=D




) GPS effects accumulate over time

> Q: Is Pre-Selection of Al bulls on MS=(GEBV-PA) or on GEBV ?
1. PA=Between Family: only bulls from the best families are used in Al
2. MS=Within Family: only the best young bulls within a selected family
> PA (family) pre-selection is based on 2 sources of information
1. Contribution from traditional EBV of parents
2. spp from additional Genomic Information on ancestors (GEBV-EBV)
» MS (within) pre-selection is based on only the 2" source of info
2. sys from additional Genomic Information for the young bull (GEBV-PA)



Includes GPS of ancestors

- The true Breeding Value of a genomic young bull includes his within-
family selection (sys) plus accumulated GPS of his ancestors (spa)

- Matrix Q, links each animal to the sum of these two terms:
(Q2:animai* S) = Sanimat = (Spa + Sms)

Q2.animai = Q2:pa + Q2.m5
[Qz:animal = 0.5 * (QZ:Sire + QZ:dam)I‘l' QZ:MS] ‘ Q, - GPS

= Q, - UPG
[Ql:animal = 0. 5 & (Ql:sire T Ql:dam)] Qualas, 1988
Ql:animal — Ql:PA




EXpected GPS in foreign countries

- We want to estimate GPS effects in the country of selection only:

> To get only good estimates in an s of order = NCOU, rather than estimating
INCOUJ*INCOU] combinations that would include many poor estimates

- We include genetic regressions of GPS effects to foreign scales in matrix Q.:
Gpy

Sanimal:BA = ( ) * Sanimal:A,A

Gag

/ Gga AN

QZ:mS:B,A — G & QZ:mS:A,A
AA

Step 2 Step
1




Testing the GPS-MODEL

1. Simulation study: unbiased national EBV input for MACE

1. A simple design with GPS practiced in only one country
2. Expectation of MACE output that Is unbiased, which is easily tested

2. Official data study: biased national EBV input used in MACE, after
years of GPS Iin many countries, but with GPS effects not properly
Included in the national EBV computed without genotypes




s 1. Simulated Data

- Simulated phenotypes based on observed distributions of PA and MS for
proven bulls in the April 2014 MACE evaluation for Protein

> Youngest proven bulls were born in 2008/2009 (before GPS started)

- GPS effects were simulated as an increase of approximately 1 genetic SD In
true genetic means, for the GPS bulls born between 2001-2009, registered
and with a national EBV from MACE country #1

> GPS means were added to the de-regressed EBV used in MACE
> Input data for MACE were “unbiased” (GPS effects included in DRP)
> Expectation that GPS effects are properly estimated with a correct model




3.0
2D
2.0
1.5
1.0
0.5
0.0

Simulated Data with strong GPS
(Tyriseva, 2018,,5; Benhajali, 2019)
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3.0
2D
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(MACE with unbiased EBV input)
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Simulated Data with' strong' GPS
(GPS-MACE with unbiased EBV input)
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)2, Official MACE Data

- Official input data used for MACE In April 2022 for:
> Eight traits: pro, fat, ocs, ous, scs, ccl, int, msp
» Three "genomic” breeds: Holstein, Jersey, Brown Swiss

- Proven bulls were born as recently as 2017, with approximately 8
completed years of progeny-proven GPS bulls (2009-2016)

- National EBV are biased (i.e. with estimated MS effects that are too
small) due to the requirement of ignoring genotypes

> Expecting GPS effects to be “underestimated” from these data



Results and Discussion

Some practical considerations for solving the model

Estimates of GPS effects (all on standardized bull proof scales)
Impacts of adding GPS effects on the EBV and PA

Plans and timeline for implementing GPS-MACE
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* Ridge Regression is FASTER

PCG lterations to Converge (Cr =

Future MACE service (cr = E-7)

60000

50000

40000

m Fixed GPS Ridge 100 m=mRidge 1000 mno GPS

30000

20000

10000

. A/I Current MACE service (cr = E-15)

L e ] —
Holstein Jersey Brown Swiss

MACE for Protein, April 2022 data



Benefits of Ridge Regression

- GPS-MACE is a more complicated model
1.  We are adding another partition for ANIMAL with s,¢
2.  We now estimate selection effects at both ends of the pedigree

> UPG In the base population and s,,s In the current population

- We are increasing co-linearities and confounding among estimates, and the

potential for linear dependencies (i.e. singular equations with no unique
solutions) If we treat covariables in s as fixed effects

- Fitting Ridge/Random s breaks any mathematical dependencies,

guaranteeing unique EBV solutions, shrinking V(estimates) and reducing the
likelihood of over-fitting the data, to improve “future (i.e genetic) prediction”



Yk Ridge Estimates are BETTER
current levels of GPS across 8 Traits

(sys estimates for Holstein)

*Fixed ®Ridge=100 =Ridge=1000

LLTRLL

|

-0.8
AUS BEL CAN CHE CZE DEU DFS ESP EST FRA GBR IRL ISR ITA JPN KOR LTU NLD NZL POL SVN USA
HOLSTEIN - Registered Al bulls born 2014-2017



Yk Ridge Estimates are BETTER
current levels of GPS across 8 Traits

(sys estimates for Jersey and Brown Swiss)

*Fixed ®"Ridge=100 =Ridge=1000

-0.2- \ N N

-0.4
-0.6
-0.8

AUS CAN CHE DEA DFS FRA GBR ITA NZL SVN USA
JERSEY and BROWN SWISS - Registered Al bulls born 2014-2017



Yk Ridge Estimates are BETTER
current levels of GPS across 8 Traits

(sys estimates for Holstein)

*Fixed ®"Ridge=100 =Ridge=1000

0.8
0.6

o e " 4 |
02 I ﬂ:ﬁ. < B
-0.2 T

e

-0.4
-0.6
-0.8

AUS CAN CHE DEU DFS FRA GBR ITA NZL SVN USA
HOLSTEIN - Registered Al bulls born 2014-2017



Impact of GPS on' MACE proofs

Distributions of Averages by Country of Registration,
for the Holstein trait Protein in Canada

0.4
0.3
0.2+
| _ 1 agpsAN
0.1 T | | ogpsMS
A AL .
0 1 1 mAN
-0.1 e
-0.2

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Birth Year of HOLSTEIN bulls EBV-proven in any country
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Scales*Traits: (176 for Holstein) (143 for Jersey + Brown Swiss)

: : Proof . Jersey and

Old Bulls (y=GPS-MACE) Minimum Maximum Minimum Maximum

2000 2008 Correlation 1.000 1.000

I Slope 0.997 1.004 0.998 1.013

2000 2017 Correlation 0.999 0.998

— Slope 0.993 1.010 1.000 1.032
2009 2017 Correlation 0.997 0.995

GPS Bulls I Slope 0.996 1.011 0.995 1.037

2014 2017 Correlation 0.990

Slope 1.021 0.986



&) Implementing GPS-MACE

- Expecting small EBV changes initially, for MACE of proven bulls

> The future MACE proof changes will be bigger with improved national input data

- Can immediately expect larger changes in PA from MACE, which are used
directly in GMACE for the young genomic bulls

> Impacts on GMACE results have not been examined yet

> The national GEBV - MACE_PA will be larger with GPA_ MACE, so the national
GEBYV should have relatively larger impacts on GMACE proofs for the young bulls

- Implementation of GPS-MACE In Interbull systems could be ready soon
> A GPS-MACE pilot run could be possible as early as this fall, 2023



- GPS effects alter the distributions of GEBV, with effects on both the PA
(between-family) and MS (within-family) portions of an Al sire’s GEBV

- BLUP handles most of the PA selection effects, but none of the MS pre-selection

- GPS effects can be added as an additional term in the model to estimate:

Genomic pre-selection on MS of young genotyped bulls

Plus any additional PA selection beyond PBLUP, based on additional (GEBV-EBV) information
from genotypes of ancestors, which was not picked up already as parental BLUP selection

Regressions of GPS effects on time, by country of selection works well (simulated + real data)

- GPS-MACE programs have been developed for use by Interbull

Solve-time is longer than regular MACE, with a more complicated model, but still feasible

Programs have been tested on Interbull data and computing systems
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ouestions to the Audience

1. Is|additional R&D requiredjbefore a PILOT run?

> Adjustments for GPS effects on V(m) (HV-GPS-MACE) ... do this first?
> Impacts on GMACE results (e.g. with new PA input) ... check this first?

> Should PILOT be ASAP for involvement of national GE centres ?

2. |How to CREATE better national input pata for GPS-MACE?

> Reducing bias in MACE input data, by properly including "GPS group effects” but not
the “individual genotype effects”, has large expected benefits

> Implementation of GPS-MACE means Interbull would be ready to receive better input

3. |How to VALIDATE if it really is better gational input data for GPS-MACE?
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Some background

* The input phenotypes for MACE are derived from EBVs:
these are biased due to not including genomic based selection decisions.

- EBVs ignore genomic pre-selection (GPS)

- EBVs deviate from the expected the more generations genomic selection has been applied.

- GPS affects MS terms: stronger is selection, larger is E[MS], smaller is Var[MS]

Can a model with Mendelian sampling terms instead of EBV be used to

- compute equivalent breeding values

- lessen the bias in predictions by pre-adjustment of the Mendelian sampling variance



This presentation

* Presents 2 models with the Mendelian sampling terms as unknowns

 Test that these models work on a small MACE data

* Present a possible approach for Mendelian sampling adjustment



Models with Mendelian sampling (MS) term

Standard BLUP: y =1 u + Zu + e, where u ~ N(0,Ac ), e ~ N(O,R)

Expressing A by its LDL decomposition: A=L D L’ allows two equivalent models with an MS term

« MSILL y=1p+L,m,+e where m, ~ N(0,D,0,%), e ~ N(O,R)
where the subscript o refers to the A matrix of the individuals with observation and
A =L,D_L, (i.e, LDL of a subset of A).

« MSII. y=1p+ZLm+e, where m ~ N(0,Dg %), e ~ N(O,R)
which uses A of a full pedigree.

Note: m_ in MS | has only the size of individuals with observation - MME is smaller than BLUP/SM I
Note: u = L m, i.e,, standard BLUP and MS Il models can give all the same estimates.



Multi-trait models with Mendelian sampling (MS) term

Standard AM-BLUP: y =X pu + Zu + e, where u ~ N(0O,GRA), e ~ N(O,R)

where G is the genetic covariance matrix for the traits.

« All vectors and matrices are assumed to be for multiple traits
« A=LDL as before

- MSI y=Xp+L, m, +e where m, ~ N0, GRD,), e ~ N(O,R)
where the subscript o refers to the individuals with observation

« MSII: y=Xpu+ZLm + e where m ~ N0, GRD), e ~ N(O,R)



What are the L matrices?

MS I: the original model is reparametrized to apply only to

phenotyped animals:

MS II: the original full A matrix is used to make the L matrix

Z —matrix in standard BLUP is replaced by L, matrix
l.e. each observation is modelled using ancestor
contributions and an MS term.

Z-matrix has ones for phenotyped individuals
ZL matrix (new design matrix) includes ancestor
contributions from (also non-phenotyped) individuals

RelaX?2 instructions:

input pedigree # Pedigree input
file amped selected.ped # Use this file as pedigree file
record id sire dam # This input information

input animals # A matrix for these animals
file MACE smaller 123 ids
record id # 1d column

output overwrite lower amatrix amatrix MT.txt # A matrix

input pedigree # Pedigree input
file amped selected.ped # Use this file as pedigree file
record id sire dam # This input information

input animals # L matrix for these animals
file MACE smaller 123 ids
record 1id # 1d variable locations

output overwrite lmatrix lmatrix MT.txt # output L matrix



The D —-matrices are

Diagonal matrices having the variances of MS terms

MS I: D matrix from LDL decomposition of A,

MS II: Simple structure can be computed using pedigree:
base population d;=1
one parent known d.=%4

both parents known d..= %.

Note: The models need variances GQD, or GQD that can be easily computed.

These matrices have blocks of d.G where d. is diagonal from D, or D.



Pilot test of the concept

» Concept was pilot tested using standard MiX99 package

* Input data generated using RelaX2 (minor change to output the A and L —matrices)
* And some help programs to make matrices L,, ZL, GQD_, and GQD.

* An old research data from MACE evaluations were used as an example (Tyriseva, et al. 2011)



Test data: MACE model, 3 countries/traits
DEPENDENT VARIABLES:

TR TR-NAME N-0BS MEAN
1 dyd PROT 71028 -0.67590
2 dyd PROT 16734  1.8439
3 dyd PROT 8900 -5.5464

MINIMUM MAXIMUM
16.481 -59.134 391.55
11.905 -39.712 47.086
11.638 -48.024 34.878

Standard MACE model in MiX99

Multi-trait data presentation

DATAFILE ../MACE smaller 123 MT.dat
INTEGER  BULL CTRY1 CTRY2 CTRY3
REAL dydl W1 dyd2 W2 dyd3 W3
MISSING -8192.0

PARFILE MACE smaller.var # Varliance component file

PEDFILE ../amped selected.ped # Pedigree file

PEDIGREE BULL am # Genetics assoclated with pedigree

TMPDIR . /tmp

MODEL
dydl = CTRY1 - - BULL ! weight= Wl
dyd2 = CTRYZ - BULL ! weight= W2
dyd3 = CTRY3 BULL ! welight= W3

Trait group data presentation

DATAFILE MACE smaller.dat
INTEGER  BULL COUNTRY
REAL dyd PROT WEIGHT
MISSING -8192.0
TRAITGROUP COUNTRY

PEDFILE amped selected.ped # Pedigree file
PEDIGREE BULL am # Genetics assocliated with pedigree

PARFILE MACE smaller.var # Variance component file

TMPDIR . /tmp

MODEL
dyd PROT(1) = COUNTRY BULL ! weight= WEIGHT
dyd PROT(2) = COUNTRY BULL ! weight= WEIGHT
dyd PROT(3) = COUNTRY BULL ! weight= WEIGHT



A = L D L matrix summaries Regression matrices for MiX99

REGMATRIX  heterogeneous reg FIRST=1 LAST=31578
REGFILE MS I LO.txt

31,578 rows and columns =2 ~4GB in real 4. REGPARFILE MS5_I Db_3tr.txt

492,425,057 non-zeros = 49.4% non-zero ( so the lower triangle is almost full)

MS I: L, for the solver

REGMATRIX heterogeneous xeg FIRST=2 LAST=66776

REGFILE MS TII ZL.reg
MS II: L for the solver REGPARFILE MS II D 3tr.par
: -
31,578 rows, 66,776 columns 2> ~8.5GB in real 4. MS variances
135776 non-zeros > 0.01% non-zero diagonal relationship” file

Although both methods can be tested by a regular MME solver, the sparsity pattern in SM |l
suggests a lower memory use and fast computations can be achieved by using pedigree data and a
"half”-Colleau algorithm in the PCG iteration.



PCG Convergence Red: Standard MACE model, 178 iter.
Black: MS | model, 2,164 iter.
Blue: MS Il model, 1,098 iter.

Solver computing times:
Red: 2.5 sec.

Black: 53 min.

Blue: 44 sec.

log10(Criterion)
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The MS models showed poor convergence. This is expected (similar to GBLUP vs SNPBLUP).

Further work is needed to improve convergence!



Some thoughts on the possible use of MS model: iterative MS term estimation

* An iterative algorithm can be considered:

1) Solve MS model = solutions for MS term m

2) Compute the SD (and average) of m within predefined groups

3) Adjust the variance terms in D for individuals with deviating m using the information in step 2)

4) Go to step 1) with the new D, or stop after some rounds.

=» Highly deviating MS terms are shrunk which may lessen the influence of biased information from relatives.



Summary

« Two models that solve Mendelian sampling terms directly can be used

« Standard software can be used to solve these models, although computationally more efficient
algorithms are needed for large data sets.

« L matrix not given as input but instead solved implicitly from the pedigree

» Convergence of these models was poorer than the standard relationship matrix-based models
* May have to become a larger issue when more traits (countries) are analyzed

« The Mendelian deviation adjustment algorithm was not fully formulated nor tested.
ldeas?



ouestions to the Audience

1. Is|additional R&D requiredjbefore a PILOT run?

> Adjustments for GPS effects on V(m) (HV-GPS-MACE) ... do this first?
> Impacts on GMACE results (e.g. with new PA input) ... check this first?

> Should PILOT be ASAP for involvement of national GE centres ?

2. |How to CREATE better national input pata for GPS-MACE?

> Reducing bias in MACE input data, by properly including "GPS group effects” but not
the “individual genotype effects”, has large expected benefits

> Implementation of GPS-MACE means Interbull would be ready to receive better input

3. |How to VALIDATE if it really is better gational input data for GPS-MACE?



Wrap up Session
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