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• GPS is when we choose only a subset of genotyped candidates for phenotyping. 

• GPS alters the distributions of true BV for phenotyped individuals in our GE systems

• Distributions of true BV for GPS groups of individuals have shifted means and reduced 

variances relative to the full normal distribution for all candidates prior to selection

• GBLUP can account for GPS effects on true BV distributions, if the genotypes of all 

selection candidates are included

• GBLUP can therefore generate unbiased GEBV

NOTE: my “GBLUP” here can include Multi-step (G) and Single Step (H) systems,

animal-based and SNP-based parameterizations:  G-BLUP, H-BLUP, SNP-BLUP, …

What is Genomic Pre-Selection (GPS)?



• PBLUP systems do not include genotypes, but phenotypes are eventually recorded, and 

the phenotypes include expression of the GPS effects.

• Modified distributions can be estimated for GPS groups of individuals from phenotypes

• We have a problem, however, that PBLUP doesn’t know if observed distributional 

changes (e.g. in elevated phenotypic means) were due to GPS of the sires, or due to 

other factors in the model, like herd environment effects, genetic value of the sire’s 

mates, Mendelian sampling of the daughters, PA vs MS of the sire, etc.

• The EBV of a GPS sire, his mates and progeny from PBLUP are probably all biased if

we do not, in some way, fully direct sire GPS effects into the sire’s EBV, and away from 

these other individuals and environmental factors included in the model

NOTE: my PBLUP here refers to Pedigree-BLUP with no genotypes

GPS effects in PBLUP systems



• If instead of using PBLUP, we fed unbiased national GEBV into MACE, and then MACE 

into national GBLUP, we would repeatedly double-count the genomic information

• Although national EBV are biased they are also genomics-free, which allows the use of 

MACE proofs as input for national GEBV without double-counting the genotypes

• A Working Group was established in 2018 to work on solutions for reducing EBV bias 

while continuing to exclude individual genotype effects in a better future MACE service

 First report from the future MACE WG, 2019 Interbull Meeting in Cincinnati, USA

 Proposed model for Future MACE, 2022 Interbull Meeting in Montreal, Canada

 Implementing a GPS-MACE service, 2023 Interbull Workshop in Rome, Italy

So why use PBLUP in MACE?



• JDS: National EBV are biased w/o genotypes used for GPS (Patry and Ducrocq, 2011)

• JDS: MACE proofs include the national EBV bias (Patry et al, 2013)

• Interbull workshop: Adapting MACE for GPS (Slovenia, 2017 Feb)

Interbull Technical Committee and Working Groups: tasked to quantify GPS effects and 

simulate GPS data to test future MACE approaches (Estonia, 2017 Aug)

• Interbull meeting: Modifying MACE for GPS (USA, 2019 Jun)

• Interbull webinar: Genomic-free input for MACE (2021 Feb)

• Interbull meeting: Genetic regressions for GPS in MACE (Canada, 2022 May)

• Interbull workshop: Plans for implementing GPS-MACE (Italy, 2023 Feb)

Key Reports and Activities

Literature Review



Genomic-free input for MACE
Slide from 2021 Interbull Webinar

Presentation Today Discussion Today



1. Selection bias is generally not a big concern if all data used for selection can 

be properly included in a Closed evaluation system  (I. Jibrila)

 National Single-step without integration of foreign data

 Breeding Company systems based on closed-line breeding

2. Open system data exchange/integration adds complexity (P. Sullivan)

 Single-step with MACE integration for foreign sires

 MACE with integration of national EBV without genotypes

 GMACE, Intergenomics and SNP-MACE

3. Software tools and modeling approaches are available (I. Strandén)

Today’s Presentations



Genomic preselection in single-step evaluation
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Part 1: Impact of genomic preselection on accuracy and bias in 

subsequent single-step evaluation of preselected animals



Simulated breeding programme

● Single-trait breeding goal 

● 15 recent generations with selection

● Pedigree: generations 0 to 15

● Genotypes: generations 13 to 15

● Phenotypes: generations 11 to 15

Data
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Implementation of genomic preselection

Genomic
preselection

No 
preselection

High 
preselection

Very high 
preselection
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 Control scenario

 10% of males, 15% of females
preselected

 5% of males, 12.5% of females 
preselected

Single-step evaluation used to preselect!



▪ Both PBLUP and ssGBLUP implemented

▪ yi= µ + animali + ei

▪ 𝐇−1 = 𝐀−1 +
0 0
0 0.9𝐆 + 0.1𝐀𝟐𝟐

−1 − 𝐀22
−1

▪ All information on preculled animals discarded

Subsequent evaluation
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▪ Accuracy (rTBV,GEBV) 

▪ Level bias (mean TBV – mean GEBV)

▪ Dispersion bias (bTBV,GEBV) 

Measuring the impact of preselection on the subsequent evaluation
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▪ Accuracy always reduced with preselection

▪ No bias with single-step, regardless of preselection scenario

Summary of results from the Part 1
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Part 2: Information needed in subsequent single-step evaluations to

prevent genomic preselection bias



▪ Same as in part1

▪ Exception: now only high genomic preselection scenario implemented

Implementation of genomic preselection
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Nine scenarios based on sources and amounts of genomic information:

Subsequent evaluation
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Grandparents of the selection
candidates and their sibs (G13)

Culled sibs of parents of 
selection candidates (G14) Parents of selection

candidates (G14)

Preculled animals
(G15)

Preselected animals
(G15)



Four scenarios based on sources and amounts of phenotypic information:

Subsequent evaluation
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G11

Preselected animals (G15)

G12

G13

G14 With both genotypes and phenotypes

at preselection

With phenotypes but no genotypes at 

preselection



▪ To prevent preselection bias in subsequent single-step evaluations, the

following are needed:

● Reference data used at preselection stage

● Genotypes and of preselected animals

▪ Genotypes of preculled animals only needed if their parents are not genotyped!

Summary of results from Part 2
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Part 3: Single-step prevents preselection bias in subsequent evaluation by

correctly estimating Mendelian sampling terms of preselected animals



Averages of Mendelian sampling terms
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A B C D E F

A  Subsequent pedigree eval., Ctrl scenario

B  Subsequent single-step eval., Ctrl scenario

C  Initial pedigree eval., GPS scenario

D  Initial single-step eval., GPS scenario

E  Subsequent pedigree eval., GPS scenario

F  Subsequent single-step eval., GPS scenario



Variancesof Mendelian sampling terms
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A B C D E F

A  Subsequent pedigree eval., Ctrl scenario

B  Subsequent single-step eval., Ctrl scenario

C  Initial pedigree eval., GPS scenario

D  Initial single-step eval., GPS scenario

E  Subsequent pedigree eval., GPS scenario

F  Subsequent single-step eval., GPS scenario



Distributions of Mendelian sampling tems
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Distributions of Mendelian sampling tems
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Distributions of Mendelian sampling tems
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Distributions of Mendelian sampling tems
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Preselection bias is not an issue in single-step evaluations! 

Take home message
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• MACE uses biased input EBV, generated without genotypes 

and therefore ignoring Genomic Pre-Selection (GPS) effects on 

the Mendelian sampling distributions of most recent AI bulls

Objectives:

1. Develop a GPS-MACE international model that accounts for 

these GPS effects without requiring any genotypes, intending to

2. Reduce bias in future MACE proofs that can still be used as 

phenotypic input data for national genomic evaluation systems

GPS-AI bulls in MACE



Genetic regressions for GPS

• We wish to estimate selection effects on GPS groups of AI bulls.

• Pre-selection groups (CouSel) based on Country of registration

 840+USA are combined,  DNK+FIN+SWE are combined as DFS

• To avoid small groups, we fit regressions on YEAR by CouSel

 Estimating trends in GPS (YEAR as a covariable) for each COUNTRY

• To allow non-linearity, to reduce fluctuating estimates over time, and 

for stable estimates on most recent bulls, we use 3-year knotted 

linear slopes (in parameter vector s) with the following assumptions:



Genetic regressions for GPS

• Assumptions about GPS of dairy sires:

1. GPS level = x and trend=0 in most recent time period (2014-2017)

2. GPS level = 0 and trend=0 prior to the start of GPS (1980-2008)

3. GPS trends during intermediate periods (2009-2011 and 2012-2014) 

capture evolving GPS intensities, as the levels go from 0 to x

4. x = 0 for smallest populations where x cannot be estimated reliably

• Allows for different timings of GPS implementation, and different 

yearly intensities of pre-selection, for each trait-country combination

• National input data drive all GPS estimations and EBV adjustments



• Current MACE: 𝑦 = μ + Q1g + 𝐚 + e

• Current MACE: 𝑦 = μ + (Q1g + 𝐏𝐀) + (𝐌𝐒) + e

• GPS-MACE: 𝑦 = μ + (Q1g + 𝐏𝐀) + (𝐐𝟐𝐬 + 𝐦) + e

𝐌𝐒 = Q2s, ഥ𝐦 = 𝟎

GPS-MACE model

GPS effects

GPS effects



GPS-MACE equations

 

𝐗′𝐃𝐗 𝐗′𝐃𝐙 𝐗′𝐃𝐙𝐐𝟐

𝐙′𝐃𝐗 𝐙′𝐃𝐙 + 𝐖 ⊗ 𝐆𝒕
−𝟏 𝐙′𝐃𝐙𝐐𝟐

𝐐𝟐
′𝐙′𝐃𝐗 𝐐𝟐

′𝐙𝐃𝐙 𝐐𝟐
′𝐙′𝐃𝐙𝐐𝟐 + 𝒄𝐈

  
𝛍

𝐐𝟏𝐠 + 𝐚
𝐬

 =  

𝐗′𝐃𝐲

𝐙′𝐃𝐲

𝐐𝟐
′𝐙′𝐃𝐲

  

Covariables in s have Incidence Matrix:  𝐙𝐐𝟐

We can add a Ridge-regression factor:  c

𝐄𝐁𝐕 = ෝ𝛍 + 𝐐𝟏ො𝐠 + ො𝐚 + 𝐐𝟐ො𝐬



MiX99 Instructions for GPS-MACE



Q: Is Pre-Selection of AI bulls on MS=(GEBV-PA) or on GEBV ?

1. PA=Between Family: only bulls from the best families are used in AI

2. MS=Within Family: only the best young bulls within a selected family

PA (family) pre-selection is based on 2 sources of information

1. Contribution from traditional EBV of parents

2. 𝐬𝐏𝐀 from additional Genomic Information on ancestors (GEBV-EBV) 

MS (within) pre-selection is based on only the 2nd source of info

2. 𝐬𝐌𝐒 from additional Genomic Information for the young bull (GEBV-PA)

GPS effects accumulate over time



• The true Breeding Value of a genomic young bull includes his within-

family selection (𝐬𝐌𝐒) plus accumulated GPS of his ancestors (𝐬𝐏𝐀)

• Matrix Q2 links each animal to the sum of these two terms:
(𝐐2:𝑎𝑛𝑖𝑚𝑎𝑙∗ 𝐬) = 𝐬𝒂𝒏𝒊𝒎𝒂𝒍 = (𝐬𝐏𝐀 + 𝐬𝐌𝐒)

𝐐2:𝑎𝑛𝑖𝑚𝑎𝑙 = 𝐐2:𝑃𝐴 + 𝐐𝟐:𝑴𝑺

𝐐2:𝑎𝑛𝑖𝑚𝑎𝑙 = 𝟎. 𝟓 ∗ (𝐐2:𝑠𝑖𝑟𝑒 + 𝐐2:𝑑𝑎𝑚) + 𝐐𝟐:𝑀𝑆

𝐐1:𝑎𝑛𝑖𝑚𝑎𝑙 = 𝟎. 𝟓 ∗ (𝐐1:𝑠𝑖𝑟𝑒 + 𝐐1:𝑑𝑎𝑚)
𝐐1:𝑎𝑛𝑖𝑚𝑎𝑙 = 𝐐1:𝑃𝐴

Q2 includes GPS of ancestors

Q2 - GPS

Q1 - UPG
Quaas, 1988



• We want to estimate GPS effects in the country of selection only:

 To get only good estimates in an s of order = NCOU, rather than estimating 

[NCOU]*[NCOU] combinations that would include many poor estimates

• We include genetic regressions of GPS effects to foreign scales in matrix Q2:

𝐬𝒂𝒏𝒊𝒎𝒂𝒍:𝐁,𝐀 =
𝑮𝑩𝑨

𝑮𝑨𝑨
∗ 𝒔𝒂𝒏𝒊𝒎𝒂𝒍:𝑨,𝑨

𝐐𝟐:𝒎𝒔:𝐁,𝐀 =
𝑮𝑩𝑨

𝑮𝑨𝑨
∗ 𝑸𝟐:𝒎𝒔:𝑨,𝑨

Expected GPS in foreign countries

Step 

1

Step 2



1. Simulation study: unbiased national EBV input for MACE

1. A simple design with GPS practiced in only one country

2. Expectation of MACE output that is unbiased, which is easily tested

2. Official data study: biased national EBV input used in MACE, after 

years of GPS in many countries, but with GPS effects not properly 

included in the national EBV computed without genotypes

Testing the GPS-MODEL



• Simulated phenotypes based on observed distributions of PA and MS for 

proven bulls in the April 2014 MACE evaluation for Protein

 Youngest proven bulls were born in 2008/2009 (before GPS started)

• GPS effects were simulated as an increase of approximately 1 genetic SD in 

true genetic means, for the GPS bulls born between 2001-2009, registered 

and with a national EBV from MACE country #1

 GPS means were added to the de-regressed EBV used in MACE

 Input data for MACE were “unbiased” (GPS effects included in DRP)

 Expectation that GPS effects are properly estimated with a correct model

1. Simulated Data



Simulated Data with strong GPS
(Tyrisevä, 2018JDS; Benhajali, 2019IB)



Simulated Data with strong GPS
(MACE with unbiased EBV input)

SOME

EBV Bias



Simulated Data with strong GPS
(GPS-MACE with unbiased EBV input)

NO

EBV Bias



• Official input data used for MACE in April 2022 for:

Eight traits: pro, fat, ocs, ous, scs, cc1, int, msp

Three “genomic” breeds:  Holstein, Jersey, Brown Swiss

• Proven bulls were born as recently as 2017, with approximately 8 

completed years of progeny-proven GPS bulls (2009-2016) 

• National EBV are biased (i.e. with estimated MS effects that are too 

small) due to the requirement of ignoring genotypes

Expecting GPS effects to be “underestimated” from these data

2. Official MACE Data



1. Some practical considerations for solving the model

2. Estimates of GPS effects (all on standardized bull proof scales)

3. Impacts of adding GPS effects on the EBV and PA

4. Plans and timeline for implementing GPS-MACE

Results and Discussion
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Holstein Jersey Brown Swiss

Fixed GPS Ridge 100 Ridge 1000 no GPS

PCG Iterations to converge (Cr = E-7)

MACE for Protein, April 2022 data

Current MACE service (Cr = E-15)

Future MACE service (Cr = E-7)

Ridge Regression is FASTER



• GPS-MACE is a more complicated model

1. We are adding another partition for ANIMAL with sMS

2. We now estimate selection effects at both ends of the pedigree

 UPG in the base population and sMS in the current population

• We are increasing co-linearities and confounding among estimates, and the 

potential for linear dependencies (i.e. singular equations with no unique 

solutions) if we treat covariables in s as fixed effects

• Fitting Ridge/Random s breaks any mathematical dependencies, 

guaranteeing unique EBV solutions, shrinking V(estimates) and reducing the 

likelihood of over-fitting the data, to improve “future (i.e genetic) prediction”

Benefits of Ridge Regression



Current levels of GPS across 8 Traits
(sMS estimates for Holstein)

Ridge Estimates are BETTER



Current levels of GPS across 8 Traits
(sMS estimates for Jersey and Brown Swiss)

Ridge Estimates are BETTER



Current levels of GPS across 8 Traits
(sMS estimates for Holstein)

Ridge Estimates are BETTER



Impact of GPS on MACE proofs

Distributions of Averages by Country of Registration,
for the Holstein trait Protein in Canada



Proof

Regressions
Holstein

Jersey and

Brown Swiss

(y=GPS-MACE) Minimum Maximum Minimum Maximum

Correlation 1.000 1.000

Slope 0.997 1.004 0.998 1.013

Correlation 0.999 0.998

Slope 0.993 1.010 1.000 1.032

Correlation 0.997 0.995

Slope 0.996 1.011 0.995 1.037

Correlation 0.994 0.990

Slope 0.996 1.021 0.986 1.050

Bull proofs from GPS-MACE vs. MACE

AI Sire Birth Year Range

2000           2008

2000                                              2017

2009                 2017

2014    2017

Old Bulls

GPS Bulls

Across all Scales of Evaluation for 8 traits
Scales*Traits: (176 for Holstein)  (143 for Jersey + Brown Swiss)



• Expecting small EBV changes initially, for MACE of proven bulls

 The future MACE proof changes will be bigger with improved national input data

• Can immediately expect larger changes in PA from MACE, which are used 

directly in GMACE for the young genomic bulls

 Impacts on GMACE results have not been examined yet

 The national GEBV - MACE_PA will be larger with GPA_MACE, so the national 

GEBV should have relatively larger impacts on GMACE proofs for the young bulls

• Implementation of GPS-MACE in Interbull systems could be ready soon

 A GPS-MACE pilot run could be possible as early as this fall, 2023

Implementing GPS-MACE



• GPS effects alter the distributions of GEBV, with effects on both the PA 

(between-family) and MS (within-family) portions of an AI sire’s GEBV

• BLUP handles most of the PA selection effects, but none of the MS pre-selection

• GPS effects can be added as an additional term in the model to estimate:

• Genomic pre-selection on MS of young genotyped bulls

• Plus any additional PA selection beyond PBLUP, based on additional (GEBV-EBV) information 

from genotypes of ancestors, which was not picked up already as parental BLUP selection

• Regressions of GPS effects on time, by country of selection works well (simulated + real data)

• GPS-MACE programs have been developed for use by Interbull

• Solve-time is longer than regular MACE, with a more complicated model, but still feasible

• Programs have been tested on Interbull data and computing systems

Summary



• Thanks for organizing working group meetings and communications

• Haifa Benhajali (2017-2018)

 Initial R&D and programming for GPS simulation and modeling

• Simone Savoia and Marcus Pederson (2019-2021)

 Transfer and access to Haifa’s data and programs, ITBC computing resources, etc.

• Valentina Palucci (2021-ongoing)

 Collaboration towards a routine implementation of GPS-MACE

 New processes to incorporate GPS-MACE proofs into GMACE

Interbull Centre Staff Acknowledgements



1. Is additional R&D required before a PILOT run?

 Adjustments for GPS effects on V(m) (HV-GPS-MACE) … do this first?

 Impacts on GMACE results (e.g. with new PA input) … check this first?

 Should PILOT be ASAP for involvement of national GE centres ?

2. How to CREATE better national input data for GPS-MACE?

 Reducing bias in MACE input data, by properly including “GPS group effects” but not 

the “individual genotype effects”, has large expected benefits

 Implementation of GPS-MACE means Interbull would be ready to receive better input

3. How to VALIDATE if it really is better national input data for GPS-MACE?

Questions to the Audience



Pre-selection approaches
or
some models with Mendelian sampling terms
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Some background

• The input phenotypes for MACE are derived from EBVs: 

these are biased due to not including genomic based selection decisions.

 EBVs ignore genomic pre-selection (GPS)

 EBVs deviate from the expected the more generations genomic selection has been applied.

 GPS affects MS terms: stronger is selection, larger is E[MS], smaller is Var[MS]

Can a model with Mendelian sampling terms instead of EBV be used to

- compute equivalent breeding values

- lessen the bias in predictions by pre-adjustment of the Mendelian sampling variance

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



This presentation

• Presents 2 models with the Mendelian sampling terms as unknowns

• Test that these models work on a small MACE data

• Present a possible approach for Mendelian sampling adjustment

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



Models with Mendelian sampling (MS) term

Standard BLUP:  y = 1 µ + Z u + e, where  u ~ N(0,Aσu
2), e ~ N(0,R)

Expressing A by its LDL decomposition: A=L D L’ allows two equivalent models with an MS term

• MS I: y = 1 µ + Lo mo + e, where mo ~ N(0,Doσu
2), e ~ N(0,R)

where the subscript o refers to the A matrix of the individuals with observation and
Ao=Lo Do Lo’ (i.e., LDL of a subset of A).

• MS II: y = 1 µ + ZL m + e, where m ~ N(0,Dσu
2), e ~ N(0,R)

which uses A of a full pedigree.

Note: mo in MS I has only the size of individuals with observation  MME is smaller than BLUP/SM II

Note: u = L m, i.e., standard BLUP and MS II models can give all the same estimates.

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



Multi-trait models with Mendelian sampling (MS) term

Standard AM-BLUP:  y = X µ + Z u + e, where  u ~ N(0,G⊗A), e ~ N(0,R)

where G is the genetic covariance matrix for the traits.

• All vectors and matrices are assumed to be for multiple traits

• A=L D L’ as before

• MS I: y = X µ + Lo mo + e, where mo ~ N(0, G⊗Do), e ~ N(0,R)

where the subscript o refers to the individuals with observation

• MS II: y = X µ + ZL m + e, where m ~ N(0, G⊗D), e ~ N(0,R)

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



What are the L matrices?

MS I: the original model is reparametrized to apply only to 

phenotyped animals:

• Z –matrix in standard BLUP is replaced by Lo matrix

i.e. each observation is modelled using ancestor 

contributions and an MS term.

MS II: the original full A matrix is used to make the L matrix

• Z-matrix has ones for phenotyped individuals

ZL matrix (new design matrix) includes ancestor 

contributions from (also non-phenotyped) individuals

RelaX2 instructions:

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



The D –matrices are

Diagonal matrices having the variances of MS terms

MS I: D matrix from LDL decomposition of Ao

MS II: Simple structure can be computed using pedigree:

base population dii=1 

one parent known dii=¾

both parents known dii= ½.

Note: The models need variances G⊗Do or G⊗D that can be easily computed.

These matrices have blocks of diiG where dii is diagonal from Do or D. 

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



Pilot test of the concept

• Concept was pilot tested using standard MiX99 package

• Input data generated using RelaX2 (minor change to output the A and L –matrices)

• And some help programs to make matrices Lo, ZL, G⊗Do and G⊗D.

• An old research data from MACE evaluations were used as an example (Tyrisevä, et al. 2011)

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



Test data: MACE model, 3 countries/traits

Standard MACE model in MiX99

Multi-trait data presentation Trait group data presentation

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



A = L D L’ matrix summaries

MS I:  Lo for the solver

31,578 rows and columns  ~4GB in real 4.

492,425,057 non-zeros  49.4% non-zero ( so the lower triangle is almost full)

MS II:  L for the solver

31,578 rows, 66,776 columns  ~8.5GB in real 4.

135776 non-zeros  0.01% non-zero

Although both methods can be tested by a regular MME solver, the sparsity pattern in SM II 

suggests a lower memory use and fast computations can be achieved by using pedigree data and a 

“half”-Colleau algorithm in the PCG iteration.

MS variances

"diagonal relationship" file

L0 matrix

G⊗D0 matrix

G⊗D matrix
ZL matrix

Regression matrices for MiX99

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



PCG Convergence

The MS models showed poor convergence. This is expected (similar to GBLUP vs SNPBLUP).

Further work is needed to improve convergence!

Red: Standard MACE model, 178 iter.

Black: MS I model, 2,164 iter.

Blue: MS II model, 1,098 iter.

Solver computing times:

Red: 2.5 sec.

Black: 53 min.

Blue: 44 sec.

Convergence criterion: Cr < 10-6

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023

mix99s -s -p -nocov -cr 1e-6

mix99s -s -p -nocov -srm 1 -cr 1e-6



Some thoughts on the possible use of MS model: iterative MS term estimation

• An iterative algorithm can be considered:

1) Solve MS model  solutions for MS term m

2) Compute the SD (and average) of m within predefined groups

3) Adjust the variance terms in D for individuals with deviating m using the information in step 2)

4) Go to step 1) with the new D, or stop after some rounds.

 Highly deviating MS terms are shrunk which may lessen the influence of biased information from relatives.

I. Strandén & E. Mäntysaari, Interbull workshop, Rome, Italy, Feb 2023



Summary

• Two models that solve Mendelian sampling terms directly can be used

• Standard software can be used to solve these models, although computationally more efficient 

algorithms are needed for large data sets.

• L matrix not given as input but instead solved implicitly from the pedigree

• Convergence of these models was poorer than the standard relationship matrix-based models

• May have to become a larger issue when more traits (countries) are analyzed

• The Mendelian deviation adjustment algorithm was not fully formulated nor tested. 

Ideas?
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1. Is additional R&D required before a PILOT run?

 Adjustments for GPS effects on V(m) (HV-GPS-MACE) … do this first?

 Impacts on GMACE results (e.g. with new PA input) … check this first?

 Should PILOT be ASAP for involvement of national GE centres ?

2. How to CREATE better national input data for GPS-MACE?

 Reducing bias in MACE input data, by properly including “GPS group effects” but not 

the “individual genotype effects”, has large expected benefits

 Implementation of GPS-MACE means Interbull would be ready to receive better input

3. How to VALIDATE if it really is better national input data for GPS-MACE?

Questions to the Audience



Wrap up Session
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