GENOMIC PREDICTION WITH SELECTED SEQUENCE VARIANTS IN GESTATION LENGTH OF NEW ZEALAND DAIRY CATTLE

Y. WANG, K.M. TIPLADY, E.G.M. REYNOLDS, M.A. NILFOROOSHAN, C. COULDREY, AND B.L. HARRIS

Access to wholegenome sequence data is easier nowadays

In theory, the sequence data should contain causal mutations associated with the genetic variation observed in phenotypic traits

In theory, the use of sequence data is expected to improve genomic evaluation

- Little improvement has been observed with using sequence variants in the prediction for dairy cattle
- Only causative mutations or variants very close to causative mutations can improve reliability
- non-causative mutations bring noise
- Imperfect imputation of sequence

Discovery Population

Select the variants which
have strong association
with the trait

AIM

FIND THE OPTIMAL WAY OF SEPARATING ANIMALS INTO DISCOVERY, TRAINING AND VALIDATION POPULATION TEST IF ADDING SEQUENCE VARIANTS SELECTED FROM GWAS TO THE FILTERED ILLUMINA50K MARKERS WOULD BENEFIT GENOMIC PREDICTION

GESTATION LENGTH

- It is a measurement of the calf not its dam
- It was calculated as the difference between its dam's calving and mating dates in days
- Both male and female animals have only one gestation length record
- Moderately high heritable trait $\quad\left(h^{2}=0.44-0.52\right)$ (Winkelman et al. 2001)

DATA

- 97,522 animals $(33,577 \mathrm{HF}$ <34.4\%>, 17,377 J <17.8\%>, 46,568 HFJ <47.8\%>) have both imputed to sequence and yield deviation of gestation length corrected for contemporary group, sex of the calf, breed and inbreeding.
- Born between 1995 and 2019
- Filtered imputed to sequence data contains ~16million sequence variants (MAF> 0.005, imputation accuracy> 0.9)
- Animals born after 2016 were set as validation population. Parents of the validation animals were removed from both discovery and training population

Design 1
Bias on GWAS

Design 2
Balance both functions

Whole

 populationDiscovery set

	GWAS		
Total	42,345	(43.42\%)	
Gender:	$\begin{aligned} & \text { f: } 4097 \\ & \text { (9.68\%) } \end{aligned}$	$\begin{aligned} & \xi: 38,248 \\ & (90.32 \%) \end{aligned}$	
Breed:	HF: $14,471$ (34.17\%)	$\begin{aligned} & \text { J: } 7701 \\ & \text { (18.19\%) } \end{aligned}$	$\begin{aligned} & \text { HF*J: } \\ & 20,173 \\ & (47.64 \%) \end{aligned}$

Training set
Genomic prediction

Total	42,345	(43.42\%)	
Gender:	d. $: 4149$	Q: $: 38,196$	
	(9.80%)	(90.20%)	
Breed:	HF:	J: 7758	HF*J: *
	14,333	(18.32%)	20,254
	(33.85%)		(47.83%)

Validation set

Genomic prediction

Total	12,832	(13.16\%)	
Gender:	$\begin{aligned} & \text { ఠ(: } 3731 \\ & (29.08 \%) \end{aligned}$	$\begin{aligned} & \text { Q: } 9101 \\ & (70.92 \%) \end{aligned}$	
Breed:	$\begin{aligned} & \text { HF: } 4773 \\ & (37.20 \%) \end{aligned}$	$\begin{aligned} & \text { J: } 1918 \\ & \text { (14.95\%) } \end{aligned}$	$\begin{aligned} & \text { HF*J: } \\ & 6141 \\ & \text { (47.86\%) } \end{aligned}$

Design 3
Separate by birth year

Whole population

89,738 animals

Validation set

Genomic prediction

Total	12,832	(13.16\%)	
Gender:	क尸: 3731	\&: 9101	
	(29.08%)	(70.92%)	
Breed:	HF: 4773	J: 1918	HF * J:
	(37.20%)	(14.95\%)	6141
			(47.86%)

Born between 2010 and 2016

Design 4
Same dataset for discovery and training

Whole

 population97,522 animals

	GWAS		
Total	84,690	(86.84\%)	
Gender:	$\begin{aligned} & \text { Ф: } 8246 \\ & \text { (9.74\%) } \end{aligned}$	$\begin{aligned} & \text { Q: 76,444 } \\ & \text { (91.90\%) } \end{aligned}$	
Breed:	$\begin{aligned} & \text { HF: } \\ & 28,804 \\ & (34.01 \%) \end{aligned}$	$\begin{aligned} & \mathrm{J}: 15,459 \\ & (18.25 \%) \end{aligned}$	$\begin{aligned} & \text { HF*J: } \\ & 40,427 \\ & (47.74 \%) \end{aligned}$

STATISTIC MODELS

Iterative GWAS

- Leave-one-segment-out strategy using BoltLMM (Loh P-R et al. 2015)
- Filtered Illumina50k markers were used for capturing population structure
- Significant variants for each chromosome will be set as co-variates for the next GWAS iteration. Iteration will stop once no significant variant shows
- Two p-values were used: 5×10^{-8} and $1 \times$ 1 \cap-5

Genomic Prediction

- Univariate model with BayesR implemented in GCTB (Zeng et al. 2018 Nature Genetics) with default settings

$$
y=1 \mu+X \beta+e
$$

- Prediction accuracy was calculated in the validation set as the correlation between the predicted GEBVs and the yield deviation
- Prediction bias was calculated as the regression coefficient of the yield deviation on the predicted GEBVs

COMPUTATIONAL TIME (GWAS)

$$
\mathrm{n}: 5 \times 10^{-8}
$$

Bias_GWAS ($\mathrm{n}=60,000$): $\mathbf{2 2}$ iterations, 283 variants (503:45:30)

Balance ($n=42,345$): 16 iterations, 205 variants (117:36:11)

Birth_Year ($n=38,924$): 13 iterations, 174 variants (106:10:15)

Both ($n=84,690$): 26 iterations, 391 variants (1016:51:25)

$\mathrm{n} \cdot 1 \times 1 \mathrm{n}^{-5}$

Bias_GWAS ($\mathrm{n}=60,000$): 37 iterations, 689 variants (20-07:36:11)

Balance ($n=42,345$): 30 iterations, 484 variants (716:53:48)

Birth_Year ($\mathrm{n}=38,924$): 21 iterations, 392 variants (518:00:34)

Both ($n=84,690$): 42 iterations, 783 variants (3717:53:27)

PREDICTED HERITABILITY

PREDICTION ACCURACY

Design

- Balance Bias_GWAS
Birth Year - Birth_Yea - Both
\hat{O}

PREDICTION

 BIAS
TAKE HOME MESSAGE

- More variants were selected when more animals were added to the discovery set. However, the benefit of adding more SNPs in the prediction model did not exceed the benefit of adding more animals to the training population.
- Same population used as the discovery and training population achieved the highest prediction accuracy along with the highest bias, which is not desirable.
- Based on birth year, separation is the best option. A less stringent p-value leads to more iterations and more sequence variants selected, increasing the prediction accuracy. However, it takes much more time.

ACKNOWLEDGEMENT

This study was supported by Genomics Aotearoa Better Breeding Values project, MPI Sustainable Food and Fibre Futures (SFFF) and MPI Resilient Dairy Research Program. Computational resources were provided by New Zealand eScience Infrastructure (NeSI).
(H NeSI
©LIC

Thank you

ALIC

