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Revisiting the 
“a posteriori” 
granddaughter  
design 
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Granddaughter design 

 Sires with many progeny-tested sons genotyped for 
genetic markers 

 Sons of heterozygous sire divided into 2 groups 
based on which paternal allele they received 

 Significant difference in genetic evaluations for 2 son 
groups indicates sire is segregating for QTL linked to 
genetic marker for trait of interest 

 A posteriori granddaughter design (APGD) 
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Application of APGD to U.S. Holsteins 

 Original application 
 August 2012 evaluation 
 9,180 bulls 
 Sons of 52 sires (≥100 genotyped, progeny-tested 

sons/sire)  

 Update  
 April 2015 evaluation 
 14,246 bulls 
 Sons of 71 sires (100 – 791 genotyped sons/sire) 
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Genotyped sons and their daughters 
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Traits analyzed 

 Milk production (5 traits) 

 Somatic cell score 

 Productive life 

 Calving (4 traits) 

 Fertility (3 traits) 

 Conformation (18 traits) 

 Net merit 
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Genotype and haplotype determination 

 Entire genome (including sex chromosomes) divided 
into 621 segments (∼100 markers each)  

 Specific number of markers adjusted to achieve near 
equality within chromosome  

 Haplotypes determined using findhap program  
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Analysis 

 Genomic EBV 

 No SNPs on X chromosome (sons receive Y rather 
than X chromosome from sire)  

 19,932 tests (604 segments × 33 traits) 

 Nominal significance levels of 0.05 or 0.01 
meaningless 
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Effects by trait 

 Only segments with nominal P < 10–15 considered to 
be significant 

 55 chromosomal regions met criterion 
(30 regions in 2012)  

 At least 1 significant effect for all traits (except 
protein yield, daughter stillbirth rate, and 4 
conformation traits)  

 Lowest probability (2.4 × 10–42) for protein 
percentage on chromosome 3   
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Confidence intervals (CIs) 

 Nonparametric bootstrap analysis (Visscher et al., 1996, 
Genetics) applied to chromosome with haplotype 
segments with P < 10–15  

 100 samples generated for each trait × chromosome 
combination by sampling 14,246 sons with repeats   

 For each sample, all haplotype segments along 
chromosome analyzed by APGD, and segment with 
lowest P selected   

 90% CI determined by distribution of segments with 
lowest P  
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CI as function of –log P* 
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CI results 

 In all cases, 90% CI that spanned only part of 
chromosome determined  

 Included only 2 segments for fat yield (chromosome 5) 
and protein percentage (chromosome 3) 

 Narrowed as –log10 P increased, but regression not 
significant   

 At least 6 regions with bimodal effect distribution in 
bootstrap analysis, including net merit (chromosome 18)   

 For net merit, >1 QTL segregating on chromosome and 
consistent with Cole and VanRaden (2011, JABG)  
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Looks convincing, but … 

 Literature full of QTL reports, but vast majority not 
validated 

 Discovery of QTLs for milk production traits in 
Australian dairy cattle (Kemper et al., 2015, JABG) 

 Holstein analysis included 8,478 cows and 3,049 
bulls 

 Only effects significant by 2 criteria considered for 
further analysis  
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QTLs in Australian population* 

*Significant effect at P < 10–15; ABCG2 and DGAT1 excluded 
 
**Australia location is SNP with greatest effect; 
    U.S. location is relative to 1st SNP in segment  
    with greatest effect 

Trait 
Chromo-

some 
Location (bp)** Probability 

Australia U.S. Australia U.S. 
Protein % 3 15,632,410 16,097,418 3.2×10–30 2.4×10–42 

Fat yield 5 93,945,655 92,115,327 7.9×10–15 1.1×10–37 

Fat % 5 93,945,655 92,115,327 2.0×10–38 9.8×10–40 

Protein % 20 31,228,912 31,393,193 1.3×10–34 2.4×10–33 

Protein % 29 41,989,397 42,770,336 7.9×10–41 5.6×10–07 
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Confirmation of fertility effects 

 Haplotypes with major negative effects in Holsteins: 
HH1, HH2, and HH3 on chromosomes 5, 1, and 8 
(VanRaden et al., 2011, JDS) 

 Causative mutations identified for HH1 and HH3, but 
not HH2 

 APGD significant effects for cow conception rate 
(CCR) and daughter pregnancy rate (DPR) on 
chromosomes 1 (HH1) and 5 (HH2), but not 
chromosome 8 
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Study comparison 

HH2 (chr. 1) HH1 (chr. 5) Study 

VanRaden et al. (2011, JDS) 
94,860,836 – 96,533,339 63,150,400    Location (bp) 

−3.2 ± 0.4 −3.0 ± 0.8    Effect, conception rate (%) 
1.66 1.92    Frequency (%) 

APGD CCR (%) 
64,592,861 – 68,997,018 92,115,327 – 96,166,308    Greatest effect (bp) 

6.9×10−14 1.7×10−29    APGD P  
 … 65,922,088 – 96,166,308    CI (bp)  

APGD DPR (%) 
88,167,139 – 92,958,471 88,359,142 – 92,115,327    Greatest effect (bp) 

7.7×10−17 1.6×10−26    APGD P  
64,592,861 – 111,573,593 65,922,088 – 96,166,308    CI (bp)  
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Fertility effect conclusions 

 HH1 

 Same CI for CCR and DPR 

 CI did not include position of causative mutation 
(Adams et al., 2012, PAG XX) 

 HH2  

 DPR CI included location of HH2 haplotype  

 CCR CI not computed because minimum P > 10–15 
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The next step 

 42 grandsires sequenced and available through 
1000 Bull Genomes Project  

 Remaining 29 bulls to be sequenced as       
part of BARD project  

 Initially sequence to depth of 10 – 15× 

 Haplotype determination will enable accurate and 
nearly complete sequence for most bulls 

 Additional sequencing as necessary to 
determine complete sequence 



Wiggans Interbull annual meeting, Orlando, FL, July 9–11, 2015 (18) 

Conclusions 

 At least 1 significant effect found for all but 6 traits  

 Results for yield traits correspond to those for 
Australian Holsteins 

 Results will be used to identify promising regions of 
sequence data for discovery of causative mutations 

 QTN determination 
 Increase rates of genetic gain 
 Aid in understanding mechanisms that affect traits 
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