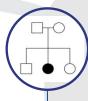
Implementation of single-step genomic BLUP in the Nordic evaluation for beef cattle


E. Rius-Vilarrasa¹, W.F. Fikse¹, J. Pöso², K. Byskov³, A. Kudinov¹, G. P. Aamand⁴

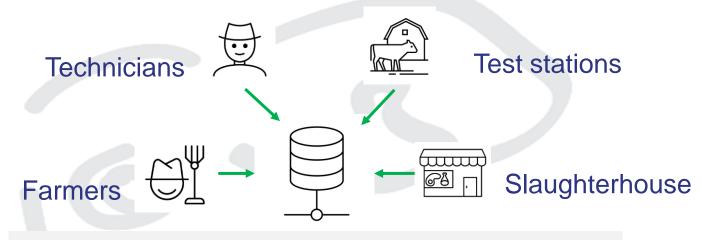
- ¹ Växa Sverige, Uppsala, Sweden
- ² Faba co-op, Vantaa, Finland
- ³ **SEGES Innovation**, Aarhus N, Denmark
- ⁴ Nordic Cattle Genetic Evaluation, Aarhus N, Denmark

Nordic purebred beef genetic evaluation

Pedigree - Breeding values

6 Calving traits and 12 FBVs

Genomic - Breeding values

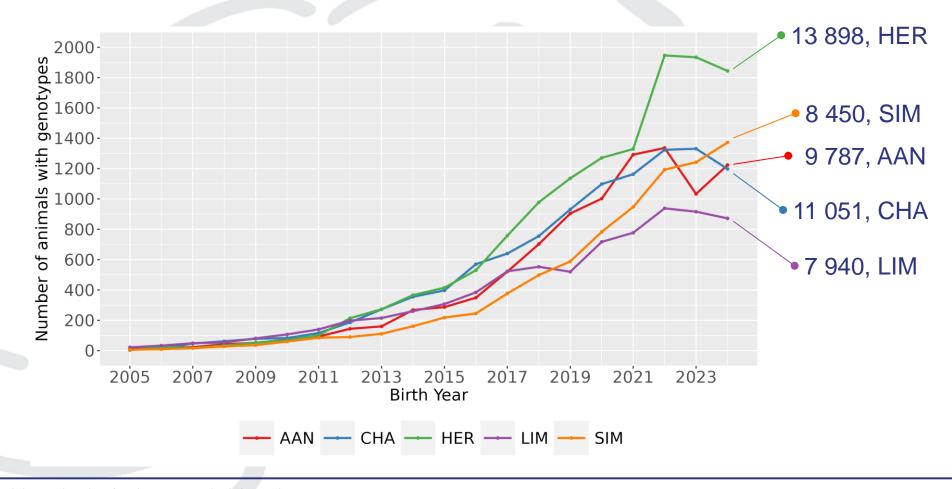


Breeds: Aberdeen Angus (AAN), Simmental (SIM), Charolais (CHA), Hereford (HER), Limousine (LIM) Blonde d'Aquitaine, Highland Cattle + Other smaller breeds

Registrations

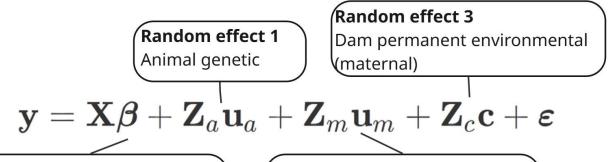
Nordic Cattle Genetic Evaluation (NAV)

Calving ease and calf survival scores (> 1998)



Birth, weaning and post-weaning weights and carcass records since the 80's for Denmark, Sweden and 90's for Finland

Number of genotyped animals – breed and birth year



NAV

Single-step GBLUP Breed-wise multi-trait animal model

Statistical mode

Fixed effects, (by country)

sex

twin

year-month

dam age-time

CG: Herd-birth year

age at weighing

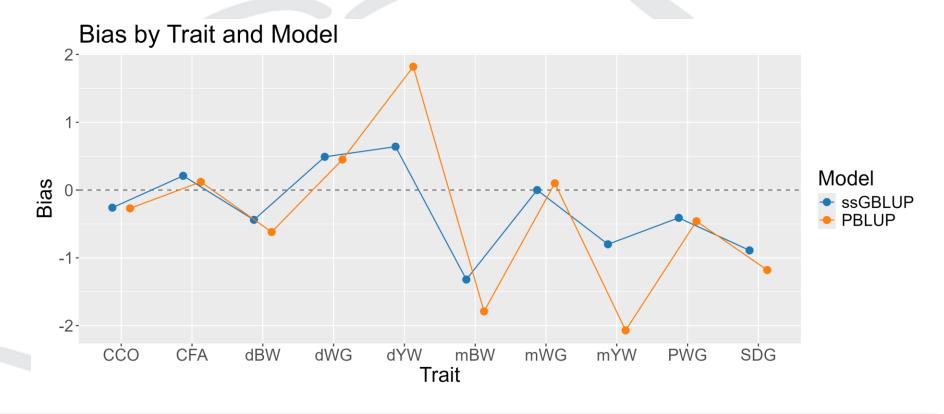
Random effect 2

Maternal genetic

Dam permanent environmental (maternal)

Solver - MiX99 family of programs

- Polygenic effect: 30%
- **Genetic groups**



Validation

- 1. Semi-parametric LR method (Legarra & Reverter, 2018) (70/30 training/test, cut-off 2 year of data)
- 2. Comparison of two consecutive evaluation using informative statistics (regression, slope, adjusted correlations (adjusted by changes in reliability), genetic trends and SD of breeding values)
- 3. Mendelian sampling deviations

LR method – BIAS results for Charolais (large reference population)

CCO=carcass conformation, **CFA**=carcass fat, DIRECT and MATERNAL: **BW**=birth weight, **WG**=weaning weight gain, **YW**=yearling weight, **PWG**=post weaning weight gain and **SDG**=slaughter daily gain

LR method – SLOPE results for Charolais (large reference population)

Slope (Ideal = 1) by Trait and Model -1.2-Model ssGBLUP PBLUP 0.8-

mĖW

mŴG

mÝW

PWG

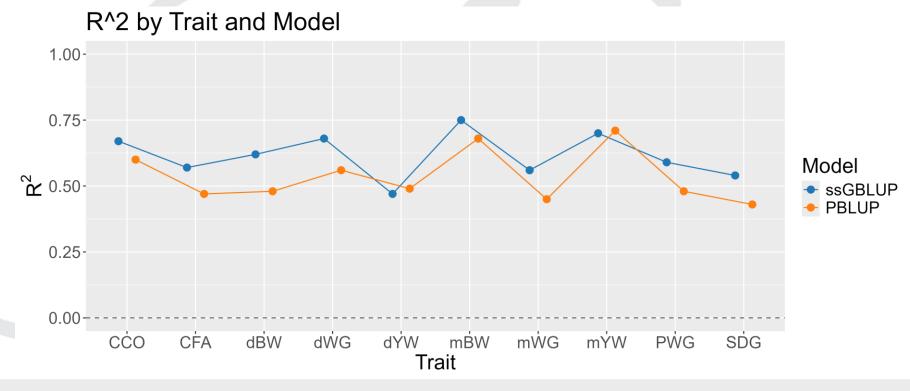
SDG

Slope (Ideal =

CĖA

CĊO

dBW


dŴG

CCO=carcass conformation, **CFA**=carcass fat, DIRECT and MATERNAL: **BW**=birth weight, WG=weaning weight gain, YW=yearling weight, PWG=post weaning weight gain and SDG=slaughter daily gain

Trait

dÝW

LR method – R^2 results for Charolais (large reference population)

CCO=carcass conformation, **CFA**=carcass fat, DIRECT and MATERNAL: **BW**=birth weight, **WG**=weaning weight gain, **YW**=yearling weight, **PWG**=post weaning weight gain and **SDG**=slaughter daily gain

What's next?

Genomic breeding values for calving traits

How to handle selective genotyping?

Investigate the possibility of Genomic breeding values for small population size breeds

Ongoing reliabilities including genomic information

