INTRODUCTION

The latest genomic routine international evaluation for calving traits took place as scheduled at the Interbull Centre. Data from 16 countries were included in this evaluation.

International genetic evaluations for calving traits of bulls from
Australia, Austria-Germany, Belgium, Canada, Denmark-Finland-Sweden,
France, Germany, Hungary, Ireland, Israel, Italy, Netherlands, Norway,
Switzerland, the United Kingdom, and the United States of America were computed. Holstein data were included in this evaluation.

BEL, CAN, DEU, DFS, GBR, ITA, NLD submitted GEBVs.
dce: BEL, CAN, DEU, DFS, GBR, ITA, NLD
dsb: CAN, DEU, DFS, , ITA, NLD
mce: CAN, DEU, DFS, GBR, ITA, NLD
msb: CAN, DEU, DFS, , ITA, NLD

CHANGES IN NATIONAL PROCEDURES
Changes in the national genetic evaluation of calving traits are as follows:
DEU (HOL) Bulls older than 17 months year old and not selected yet have been removed from the national evaluation
ESP (HOL) Elimination of many Eurogenomics bulls from the national evaluation. These bulls had already MACE
proof or have not been selected for AI
INTERBULL CHANGES COMPARED TO THE DECEMBER ROUTINE RUN

No changes in Interbull procedures
DATA AND METHOD OF ANALYSIS
Eleven Holstein populations sent GEBV data for up to 38 traits, while
classical EBVs for the same traits were used in the analyses. Young bull
GEBVs from the GEBV providers have been converted to the scales of all
countries participating in classical MACE. A bull will get a MACE EBV or
a GMACE EBV but not both.
From those eleven countries, National GEBVs of bulls less than seven years of age and with no
classical MACE proofs were included for the breeding value prediction
with a further requirement of either a MACE-PA or a GMACE-PA (for young
genomic bulls with young genomic sires) being available.

SCIENTIFIC LITERATURE

The international genetic evaluation procedure is based on international work described in the following scientific publications:

VanRaden, P.M. and Sullivan, P.G. 2010. International genomic evaluation methods for dairy cattle. Gen. Sel. Evol. 42:7

Sullivan, P.G. and Jakobsen, J.H. 2012. Robust GMACE for young bulls methodology. Interbull Bulletin 45 , Article 1.

Sullivan, P.G. 2012a. GMACE reliability approximation. Report to the GMACE working group of Interbull. GMACE_rels 2013

Sullivan, P.G. 2012b. GMACE variance estimation. Report to the GMACE working group of Interbull. GMACE_vce 2013
Sullivan, P.G. 2012c. GMACE Weighting Factors. Report to the GMACE working group of Interbull. GMACE_gedcs 2013
Jakobsen, J.H. and Sullivan, P.G. 2013. Trait specific computation of shared reference population. Reference sharing Nov 2013

NEXT ROUTINE INTERNATIONAL EVALUATION
Dates for next routine run can be found on http://www.interbull.org/ib/servicecalendar

NEXT TEST INTERNATIONAL EVALUATION
Dates for next routine run can be found on http://www.interbull.org/ib/servicecalendar

PUBLICATION OF INTERBULL ROUTINE RUN

Results were distributed by the Interbull Centre to designated representatives in each country. The international evaluation file comprised international proofs expressed on the base and unit of each country included in the analysis. Such records readily provide more information on bull performance in various countries, thereby minimizing the need to resort to conversions.

At the same time, all recipients of Interbull results are expected to honor the agreed code of practice, decided by the Interbull Steering Committee, and only publish international evaluations on their own country scale. Evaluations expressed on another country scale are confidential and may only be used internally for research and review purposes.

Country	Date
CAN	20160801
DFS	20160809
ITA	20160629
NLD	20160801
GBR	20160629
DEU	20160809
BEL	20160801

Table 2.

Number of bulls in reference population for						dce	
CAN	28422.0						
DFS	1816.0	26003.0					
ITA	24894.0	1246.0	25387.0				
NLD	2198.0	25555.0	1574.0	27343.0			
GBR	25913.0	1694.0	24780.0	2048.0	26228.0		
DEU	2031.0	25364.0	1507.0	25881.0	1883.0	27288.0	
BEI	1110.0	811.0	701.0	910.0	770.0	901.0	2009.0

Number of bulls in reference population for mce
CAN 22815.0
DFS 1783.0 26396.0
ITA 19909.0 $1236.0 \quad 20195.0$
NLD $2115.0 \quad 25951.0 \quad 1532.0 \quad 27262.0$
GBR 20459.0 1669.0 19838.0 1981.0 20731.0
DEU $1976.025793 .0 \quad 1474.0 \quad 26294.0 \quad 1841.0 \quad 27703.0$

Number of bulls in reference population for dsb
--

CAN 26067.0
DFS 1810.025764 .0
ITA $22678.0 \quad 1240.0 \quad 23167.0$
NLD $2175.0 \quad 25315.0 \quad 1552.0 \quad 26571.0$
DEU 2019.0 25119.0 1497.0 25537.0 26908.0
--
Number of bulls in reference population for msb
CAN 21172.0
DFS 1770.026265 .0
ITA $18356.0 \quad 1229.0 \quad 18638.0$
NLD $2088.0 \quad 25824.0 \quad 1508.0 \quad 27039.0$
DEU 1963.0 $25668.0 \quad 1465.026161 .027542 .0$

