Introduction
The latest routine international evaluation for longevity trait took place as scheduled at the Interbull Centre. Data from twenty one (21) populations were included in this evaluation.

International genetic evaluations for direct longevity trait of bulls from Australia, Belgium, Canada, Switzerland, Germany, Denmark-Finland-Sweden Spain, France, The United Kingdom, Ireland, Israel, Italy, New Zealand, The Netherlands, The United States of America Hungary, Norway, Slovenia and Czech Republic were computed. Brown Swiss, Guernsey, Holstein data were included in this evaluation.

CAN, DEU, DFS, FRA, GBR, ITA, NLD and ESP contributed with GEBVs.

dio: CAN, DEU, DFS, FRA, GBR, ITA, NLD and ESP

Changes in national procedures
Changes in the national genetic evaluation of longevity traits are as follows:

ZAF(HOL): Inclusion of more data

GBR(SIM): First time

ISR(HOL): Changes in the procedures for computation of records

SVN(ALL): The new base year is 2008; changed time period for data inclusion;
 Genetic parameters were recalculated.
 Herd effect was changed to herd-year effect.
 Performing cleaning data based on genomic parentage test. Because of this, the pedigree changed to some animals.

INTERBULL CHANGES COMPARED TO THE DECEMBER ROUTINE RUN

No changes in Interbull procedures

DATA AND METHOD OF ANALYSIS
Data were national genetic evaluations of AI sampled bulls with at least 10 daughters or 10 EDC (for clinical mastitis and maternal calving traits at least 50 daughters or 50 EDC, and for direct calving traits at least 50 calvings or 50 EDC) in at least 10 herds. Table 1 presents the amount of data included in this Interbull evaluation for all breeds.

National proofs were first de-regressed within country and then analysed jointly with a linear model including the effects of evaluation country, genetic group of bull and bull merit. Heritability estimates used in both the de-regression and international evaluation were as in each country’s national evaluation.

Table 2 presents the date of evaluation as supplied by each country in the 0lx-proof file.

Estimated genetic parameters and sire standard deviations are shown in APPENDIX I and the corresponding number of common bulls are listed in APPENDIX II.

SCIENTIFIC LITERATURE
The international genetic evaluation procedure is based on international work described in the following scientific publications:

International genetic evaluation computation:

Verification and Genetic trend validation:
 Boichard et al., 1995. J. Dairy Sci. 78:431-437
Weighting factors:

De-regression:

Genetic parameter estimation:
 Klei and Weigel, 1998, Interbull Bulletin 17:8-14

Post-processing of estimated genetic correlations:
 Mark et al., 2003, Interbull Bulletin 30:126-135

Time edits

International reliability estimation
 Harris and Johnson. 1998. Interbull Bulletin 17:31-36

NEXT ROUTINE INTERNATIONAL EVALUATION

The next routine evaluation of Interbull for production, conformation, udder health, longevity, calving, female fertility and workability traits is scheduled for April 2015. Deadline for sending data to the Interbull Centre is Tuesday November 18, 2014, 17:00 CET; confidential distribution of results is targeted for Wednesday November 26, 2014, with earliest possible official release of results on March 23, 2015. Please remark the three week turnaround time.

NEXT TEST INTERNATIONAL EVALUATION

The next test run for production, conformation, udder health, longevity, calving, female fertility and workability traits will take place in February 2015. Countries planning to introduce changes in their national evaluation procedures and wishing to have them included in the routine Interbull evaluation, should have their data examined in this test run. New data and validation results should be sent to the Interbull Centre no later than February 3, 2015, 17:00 CET.

PUBLICATION OF INTERBULL ROUTINE RUN

Results were distributed by the Interbull Centre to designated representatives in each country. The international evaluation file comprised international proofs expressed on the base and unit of each country included in the analysis. Such records readily provide more information on bull performance in various countries, thereby minimizing the need to resort to conversions.

At the same time, all recipients of Interbull results are expected to honor the agreed code of practice, decided by the Interbull Steering Committee, and only publish international evaluations on their own country scale. Evaluations expressed on another country scale are confidential and may only be used internally for research and review purposes.

Table 1. National evaluation dates in GMACE run August 2014

Country Date

CAN 20141201
DEU 20141202
DFS 20141102
ESP 20141111
FRA 20141204
GBR 20141101
ITA 20141106
NLD 20141201
Table 2.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Bulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>23935.0</td>
</tr>
<tr>
<td>DEU</td>
<td>1270.0 26610.0</td>
</tr>
<tr>
<td>DFS</td>
<td>1100.0 24381.0 25104.0</td>
</tr>
<tr>
<td>ESP</td>
<td>1147.0 23541.0 23323.0 24339.0</td>
</tr>
<tr>
<td>FRA</td>
<td>1426.0 21844.0 21369.0 21675.0 26143.0</td>
</tr>
<tr>
<td>GBR</td>
<td>22677.0 1127.0 965.0 1005.0 1254.0 22727.0</td>
</tr>
<tr>
<td>ITA</td>
<td>22200.0 959.0 840.0 838.0 1057.0 22107.0 22416.0</td>
</tr>
<tr>
<td>NLD</td>
<td>1306.0 24313.0 24299.0 23442.0 21596.0 1154.0 1026.0 25893.0</td>
</tr>
</tbody>
</table>