The latest genomic routine international evaluation for longevity trait took place as scheduled at the Interbull Centre. Data from 21 populations were included in this evaluation.

International genetic evaluations for direct longevity trait of bulls from Australia, Belgium, Canada, Switzerland, Germany, Denmark-Finland-Sweden Spain, France, The United Kingdom, Ireland, Israel, Italy, New Zealand, The Netherlands, The United States of America, Hungary, Norway, Slovenia and Czech Republic were computed. Holstein breed data were included in this evaluation.

BEL, CAN, DEU, ESP, FRA, DFS, GBR, ITA, NLD, HUN submitted GEBVs.

dlo: BEL, CAN, DEU, ESP, FRA, DFS, GBR, ITA, NLD, HUN

CHANGES IN NATIONAL PROCEDURES

Changes in the national genetic evaluation of longevity traits are as follows:

NLD (HOL) New added edc from a new validation affecting GREL and SD
BEL (HOL) Same data as August but after correcting some run bugs and removing some previous adjustments
HUN (HOL) Changes affecting genomic EDC
ESP (HOL) Stopped incorporating candidates and culled bulls older than 2 years old in the genomic evaluation

INTERBULL CHANGES COMPARED TO THE AUGUST ROUTINE RUN

Starting with the December 2019 evaluation, the GMACE software was updated to ensure GMACE reliabilities are always at least 1 point higher than the corresponding reliabilities of MACE parent averages. This update affects bulls from countries with extremely low national genomic reliabilities for a given trait. The vast majority of GMACE results were unaffected by the update.

DATA AND METHOD OF ANALYSIS

Eleven Holstein populations sent GEBV data for up to 38 traits, while classical EBVs for the same traits were used in the analyses. Young bull GEBVs from the GEBV providers have been converted to the scales of all countries participating in classical MACE. A bull will get a MACE EBV or a GMACE EBV but not both.

From those eleven countries, National GEBVs of bulls less than seven years of age and with no classical MACE proofs were included for the breeding value prediction with a further requirement of either a MACE-PA or a GMACE-PA (for young genomic bulls with young genomic sires) being available.

The parameter-space approach is used for the GMACE genetic evaluations (Sullivan, 2016)

SCIENTIFIC LITERATURE

The international genetic evaluation procedure is based on international work described in the following scientific publications:

Sullivan, P.G. 2012a. GMACE reliability approximation. Report to the GMACE working group of Interbull. GMACE_rels 2013
Sullivan, P.G. 2012b. GMACE variance estimation. Report to the GMACE working group of Interbull. GMACE_vce 2013
Sullivan, P.G. 2012c. GMACE Weighting Factors. Report to the GMACE working group of Interbull. GMACE_gedcs 2013

NEXT ROUTINE INTERNATIONAL EVALUATION
--
Dates for next routine run can be found on http://www.interbull.org/ib/servicecalendar

NEXT TEST INTERNATIONAL EVALUATION
--
Dates for next routine run can be found on http://www.interbull.org/ib/servicecalendar

PUBLICATION OF INTERBULL ROUTINE RUN

Results were distributed by the Interbull Centre to designated representatives in each country. The international evaluation file comprised international proofs expressed on the base and unit of each country included in the analysis. Such records readily provide more information on bull performance in various countries, thereby minimizing the need to resort to conversions.

At the same time, all recipients of Interbull results are expected to honour the agreed code of practice, decided by the Interbull Steering Committee, and only publish international evaluations on their own country scale. Evaluations expressed on another country scale are confidential and may only be used internally for research and review purposes.

Table 1. National evaluation dates in GMACE run December 2019

<table>
<thead>
<tr>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEL</td>
<td>20190901</td>
</tr>
<tr>
<td>CAN</td>
<td>20191201</td>
</tr>
<tr>
<td>DEU</td>
<td>20191203</td>
</tr>
<tr>
<td>DFS</td>
<td>20191105</td>
</tr>
<tr>
<td>ESP</td>
<td>20191111</td>
</tr>
<tr>
<td>FRA</td>
<td>20191204</td>
</tr>
<tr>
<td>GBR</td>
<td>20191009</td>
</tr>
<tr>
<td>ITA</td>
<td>20191112</td>
</tr>
<tr>
<td>NLD</td>
<td>20191201</td>
</tr>
<tr>
<td>HUN</td>
<td>20191115</td>
</tr>
</tbody>
</table>

Table 2. Number of bulls in reference population for dlo

Country	Number of Bulls in Reference Population	dlo
BEL | 3189.0 | 35973.0 |
CAN | 1759.0 35793.0 | 3862.0 |
DEU | 1298.0 5479.0 39597.0 | 36167.0 |
DFS | 1096.0 3750.0 35940.0 36861.0 | 34155.0 |
ESP | 1241.0 4101.0 36510.0 36167.0 37440.0 | 34341.0 36117.0 |
FRA | 1278.0 3803.0 34155.0 34167.0 34341.0 | 32870.0 |
GBR | 1339.0 32359.0 5497.0 3780.0 4132.0 3813.0 | 34030.0 |
ITA | 1632.0 32247.0 4860.0 3955.0 3230.0 2988.0 | 30926.0 |
NLD | 1220.0 3729.0 35499.0 35162.0 35666.0 33814.0 3804.0 2911.0 | 37511.0 |

Table 3. Number of bulls in reference population for dis

Country	Number of Bulls in Reference Population	dis
BEL | 3189.0 | 35973.0 |
CAN | 1759.0 35793.0 | 3862.0 |
DEU | 1298.0 5479.0 39597.0 | 36167.0 |
DFS | 1096.0 3750.0 35940.0 36861.0 | 34155.0 |
ESP | 1241.0 4101.0 36510.0 36167.0 37440.0 | 34341.0 36117.0 |
FRA | 1278.0 3803.0 34155.0 34167.0 34341.0 | 32870.0 |
GBR | 1339.0 32359.0 5497.0 3780.0 4132.0 3813.0 34030.0 |
ITA | 1632.0 32247.0 4860.0 3955.0 3230.0 2988.0 30926.0 32870.0 |
NLD | 1220.0 3729.0 35499.0 35162.0 35666.0 33814.0 3804.0 2911.0 37511.0 |