Comparing methods for approximating reliabilities in large-scale single-step genomic evaluations

Hongding Gao¹, Ismo Strandén¹, Zengting Liu² Jun. 21st, 2025

@ Interbull Annual Meeting 2025

¹Natural Resources Institute Finland (Luke) ²IT-Solutions for Animal Production (vit)

Introduction

Introduction

- Single-step GEBV R² are approximated for genotyped and non-genotyped animals separately
- Need conventional EBV R² for all the animals in the pedigree
- It requires propagating the genomic information to the non-genotyped animals
- Residual polygenic (RPG) effect needs to be included

To compare two methods

Gao et al. Genetics Selection Evolution (2023) 55:1 https://doi.org/10.1186/s12711-022-00774-v Genetics Selection Evolution

RESEARCH ARTICLE

Open Access

A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction

Hongding Gao ^{*} O, Andrel A. Kudinov, Matti Taskinen, Timo J. Pitkänen, Martin H. Lidauer, Esa A. Mäntysaari and Ismo Strandén

Figure 1: Luke method

INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia

Guidelines for Approximating Genomic Reliabilities of the Single-Step Genomic Model

Z. Liu¹, I. Strandén², J. Vandenplas³, H. Eding⁴, M. Lidauer², K. Haugaard⁵, and P. M. VanRaden⁶
¹ IT-Solutions for Animal Production, Heinrich-Schroeder-Weg 1, 27283 Verden / Aller, Germany
² Resources Institute Finland (Luke). Obloinen: Finland

³ Wageningen University and Research, P.O. Box 338, 6000 AH Wageningen. The Netherlands Wageningen University and Research, P.O. Box 338, 6000 AH Wageningen. The Netherlands ⁴ AEU CRF i.a., P.O. Box 454, 6000 AL Arnhem, The Netherlands ³ Interbull Centre, Dept. of animal biosciences, Box 2023, Ser-500 (1) Uppala, Sweden ⁶ USDA-ARS Animal Genomics and Improvement Laboratory, Beltsville, MD, USA Zentine Indicated.

Figure 2: Interbull method

Luke method

- Step 1: GEBV R² for the genotyped animals (via weighted-SNPBLUP)
- Step 2: Calculate genomic ERC
- Step 3: GEBV R² for the non-genotyped animals (via weighted-PBLUP)
- In step 1 and 3, ERC are used as weights

Step 1.1: DGV R^2 for the genotyped animals

- Simple SNPBLUP model using ERC as weights (ERC derived from EBV R²)
- · Avoid directly including the RPG effect

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{Z}\mathbf{g} + \mathbf{e}$$

where

$$\mathbf{e} \sim N(\mathbf{0}, \mathbf{D}^{-1}\sigma_e^2)$$

D is a diagonal matrix with elements of ERC from genotyped animals

Step 1.2: blend with the EBV R^2

$$r_{GEBV}^2 = rac{(1-\omega)\mathbf{G}_{ii}r_{DGV,i}^2 + \omega\mathbf{A}_{22_{ii}}r_{EBV,i}^2}{(1-\omega)\mathbf{G}_{ii} + \omega\mathbf{A}_{22_{ii}}}$$

where

 ω is the proportion of the RPG $r_{DGV,i}^{2*}$ is the DGV R^2 from SNPBLUP without RPG for animal i $r_{EBV,i}^2$ is the conventional EBV R^2 of animal i \mathbf{G}_{ii} is the diagonal element i of the \mathbf{G} matrix $\mathbf{A}_{22_{ii}}$ is the diagonal element i of the \mathbf{A}_{22} matrix

Step 2: Calculate genomic ERC

• Calculate the ERC accounts for the genomic information

$$ERC_g = ERC_{conv} + \frac{1 - h^2}{h^2} \times \left(\frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}\right) \tag{1}$$

where

 ERC_{conv} is conventional ERC for genotyped animals r_{EBV}^2 is EBV R^2 for genotyped animals r_{DGV}^2 is the DGV R^2 from step 1 for genotyped animals

Step 3: GEBV R^2 for the non-genotyped animals

• Use a simplified weighted-PBLUP model

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{a} + \mathbf{e}$$

where

$$e \sim N(0, D_p^{-1} \sigma_e^2)$$

 \mathbf{D}_{p} is a diagonal matrix with elements of ERC

$$\begin{bmatrix} \mathsf{ERC}_{conv} \\ \mathsf{ERC}_g \end{bmatrix}$$

Interbull method

- Step 1: calculate genomic ERC/EDC gain (φ_c)
- Step 2: propagate genomic information
- Step 3: combine the genomic \mathbb{R}^2 gain with the conventional \mathbb{R}^2

Step 1: calculate genomic ERC/EDC gain (φ_c)

- · Require the Interbull setup
 - A list of validation bulls for Interbull GEBV test (f)
 - GEBV from full and reduced dataset
 - Theoretical R² from both full and reduced dataset
 - Expected EDC
 - Adjustment factor (f): ratio of the expected and theoretical EDC

Step 1: calculate genomic ERC/EDC gain (φ_c) (Cont.)

$$\varphi_i^{adj} = \frac{1 - h^2}{h^2} \times \left(\frac{r_{DGV}^2}{1 - r_{CGV}^2} \times f - \frac{r_{EBV}^2}{1 - r_{EBV}^2} \right) \tag{2}$$

$$\varphi_c = \frac{1}{n} \sum_{i=1}^{n} \varphi_i^{adj} \tag{3}$$

Step 2: propagate genomic information (φ_i^{prog})

- Passing φ_c via pedigree from youngest to oldest animals
- From oldest to youngest via pedigree

Step 3: GEBV R²

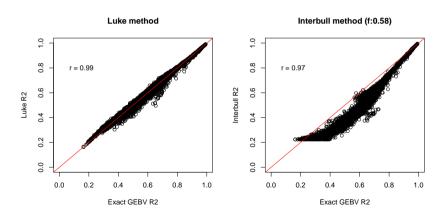
For genotyped animals

$$\varphi_i^{\text{total}} = \varphi_i^{\text{conv}} + \varphi_c \tag{4}$$

• For non-genotyped animals

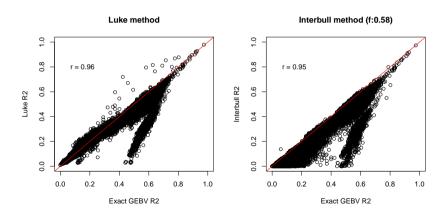
$$\varphi_i^{\text{total}} = \varphi_i^{\text{conv}} + \varphi_i^{\text{prog}} \tag{5}$$

• Final GEBV R²


$$R_i^2 = \frac{\varphi_i^{total}}{\varphi_i^{total} + \lambda} \tag{6}$$

Data

- 47K Finnish Red cows with 305-day milk yield records from lactation one
- 19k genotyped animals
- 50K SNPs
- h^2 : 0.44
- RPG: 0.3


Genotyped animals

• Mean R²: 0.66, 0.63, 0.57 for exact, Luke, and Interbull method

Non-genotyped animals

• Mean R²: 0.48, 0.44, 0.43 for exact, Luke, and Interbull method

Conclusion

- Both methods provide an effective strategy for obtaining GEBV R² from single-step model in practice
- The approximated R^2 were in good agreement with the exact R^2