

Advancing Genomic Evaluation for Methane Efficiency in Walloon Holstein Cattle towards Implementation

Y. Chen¹, H. Atashi^{1,2}, K. Wijnrocx¹, H. Berat¹, A. Vanlierde³, F. Dehareng³, H. Soyeurt¹, A.Gillon⁴ & N. Gengler¹

¹ TERRA Teaching and Research Centre, ULlège-Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
² Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran
³ Walloon Agricultural Research Centre (CRA-W), 5030 Gembloux, Belgium
⁴ Elevéo asbl, AWE Groupe, 5590 Ciney, Belgium

www.uliege.be www.gembloux.uliege.be

Introduction

Yesterday Katrien Wijnrocx showed:

Novel single-step analysis for currently evaluated traits

Introduction

\$

- Yesterday Katrien Wijnrocx showed:
 - Novel single-step analysis for currently evaluated traits
 - ▶ But we are also working on novel traits as reported since several years \rightarrow CH₄
 - My presentation last INTERBULL Meeting in Bled in 2024

Objectives today:

To illustrate advances towards implementation and publication

INTERBULL 2025

June 21, 2025 • 🗆 4

- Model \rightarrow setup and genetic parameter estimation
- Genomic evaluation system \rightarrow setup and running of routines
- Breeding program \rightarrow reported trait

 \blacktriangleright Breeding goal \rightarrow trait definition

 \blacktriangleright Phenotype \rightarrow data recording

Ongoing (slow) process

Steps towards genomic evaluation for CH₄

Used MIR equation

Available MIR-CH₄ (called hereafter PCH₄) data

Parity	No. of records	No. of cows	Mean	SD						
(C	o)variance component	estimation dat	aset (average 6	subsets)						
1	203,380	30,262	322	67.3						
2	162,385	23,932	353	69.9						
3	113,551	19,986	367	71.8						
All	479,316	34,925	343	69.2						
Genomic evaluation dataset										
1	1,935,284	287,511	324	67.0						
2	1,528,675	226,132	353	69.9						
3	1,081,440	161,234	367	72.1						
All	4,545,399	328,290	344	69.2						

+ 9,631 genotypes for Holsteins (directly linked to records)

Model → GEBV and GREL for PCH4

► GEBV

Average of daily genetic random regression solutions over 305 days and 3 lactations

GREL

▶ Pedigree based REL ← exactly same procedure as for production traits (only single-trait)

- ▶ Then REL \rightarrow GREL based on Gao el al. (2023) and Ben Zaabza et al. (2022)
 - ▶ Virtually replacing relationship matrix A^{-1} by H^{-1} for genotyped animals \rightarrow extra information
 - Propagating to non-genotypes animals

Heritabiliy and genetic correlations across lactations 0.5 1.0 0.4 0.8 0.3 0.6 0.2 0.4 0.1 0.2 r_q between parities over lactation: first vs. second (blue), first vs. third (red), second vs. third (green); h² in first (blue), second (red), and third (green) parity 0.0 0.0 5 65 125 185 245 305 365 5 65 305 365 125 185 245 DIM DIM

INTERBULL 2025

Why residual-based? Is this Methane efficiency?

- **Breeding program** \rightarrow reported trait, some options
 - ► Full integration index ← missing economic values (except DK)
 - ► Restricted gain ← difficulty to optimize
- Temporary solution
 - ▶ Ranking animals for CH₄ at constant level productive, functional, or economic outcome
- Leads to residual-based efficiency trait
 - Can also be interpreted as correcting CH4 for these levels
 - ► We "tested"
 - ► Production traits → **RMEP**
 - ► Functional traits (Sub-index for functional traits) ← because of the expected negative link → **RMEF**
 - ► Economic (Global-)index → **RMEG**
- ▶ RMEP, RMEF, RMEG (more efficient \rightarrow higher values)
 - Expressed relatively to all cow born in 2020 with records, their values \rightarrow mean = 100, SD = 10

1,020 bulls selected

- Reliability >= 0.50
- Phenotyped daughters in Belgium >= 30

USA NLD CAN DEU FRA ITA BEL GBR DNK CHE HUN AUS AUT CZE FIN IRL 321 187 141 124 98 69 30 22 11 10 2 1 1 1 1 1

INTERBULL 2025

\$\$\$ **~**

Final question: Do GEBV based on (PCH₄) MIR-CH₄ represent correctly breath CH₄?

Some other countries start to produce GEBV

▶ Public access to limited information ← we are interested to develop here further collaborations

Two countries

- Country A based on sniffers and Greenfeed
- Country B based on sniffers

► For both limited data, also few bulls reliable enough for comparisons

▶ 382 bulls in common to our 1,020 bulls

NLD	USA	CAN	DEU	ITA	FRA	BEL	DNK	GBR	CHE	HUN
105	103	57	46	23	21	10	8	6	2	1

Approximated genetic correlation (Spearman correlation, Blanchard et al.,1983)

	PCH4	RMEP	RMEF	RMEG	PCH4_SE	RMEP_SE	RMEF_SE	RMEG SE
All	-0.02	0.22	-0.03	-0.29	0.09	0.09	0.09	0.09
REL>=0.30	-0.25	0.35	0.21	-0.02	0.11	0.11	0.11	0.12
REL>=0.40	-0.30	0.32	0.31	0.07	0.14	0.15	0.14	0.16
REL>=0.50	-0.41	0.40	0.40	0.17	0.19	0.21	0.19	0.23
- 1								

Group - All(n=382) - REL>=0.30(n=198) - REL>=0.40(n=106) - REL>=0.50(n=46)

Country B

Only 14 bulls in common to our 1,020 bulls

Approximated genetic correlation (Spearman correlation, Blanchard et al.,1983)

	PCH4	RMEP	RMEF	RMEG	PCH4 SE	RMEP SE	RMEF SE	RMEG SE
All	-0.72	0.07	0.73	0.56	0.60	0.65	0.63	0.62
REL>=0.10	-0.71	0.27	0.61	0.46	0.64	0.66	0.67	0.68

Group - All(n=14) - REL>=0.10(n=10)

- ► Lauch in July 2025 \rightarrow GEBV for group of bulls
- ► Estimation of SNP effects → Estimation of DGV
 - ► Allowing others to get access to our predictions ← contact us if interested
- ▶ In progress \rightarrow fine tuning \rightarrow next evaluation end of 2025 beginning 2026
 - Based on routine run of end of 2025

We have high confidence in our system

• Comparing it to other \rightarrow GEBV in same direction

But more collaboration needed, examples:

- MIR equation
- \blacktriangleright CH₄ MACE
- SNP effects....

Thank you for your attention!

Wallonie agriculture

SPW

Nicolas.gengler@uliege.be