

Female Inclusive MACE for Improved Genetic Evaluations in Small Populations: A Special Case for Ayrshire Dairy Herds

Julius Mugambe

Postdoc Interbull Centre

About me

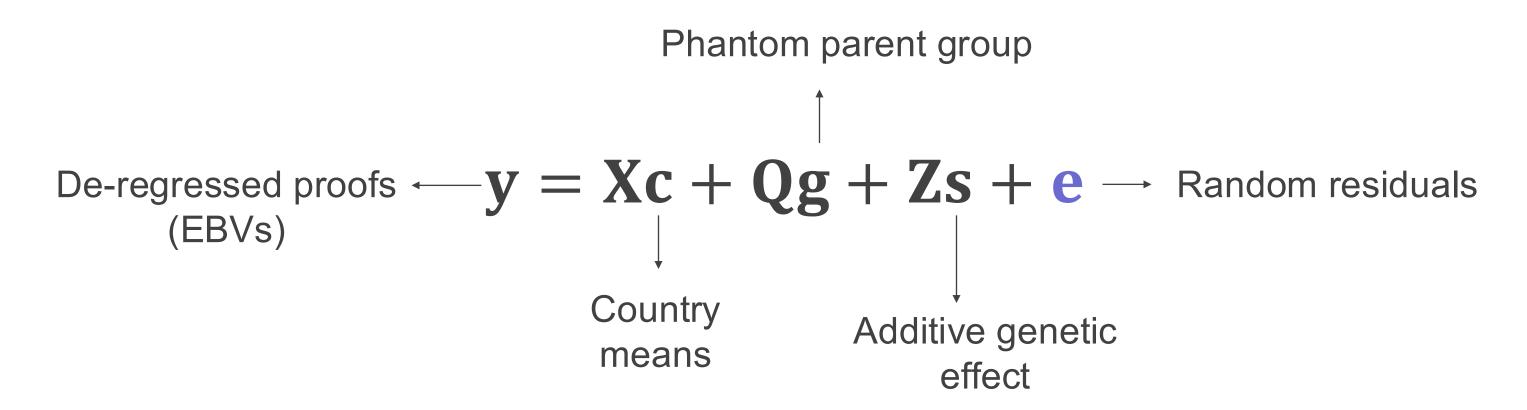
B.Sc. in Agriculture (Animal Science)

M.Sc. Animal genetics

PhD. Animal Breeding and Genetics

Postdoctoral Researcher

INTERBULL


Outline

- Background on the current MACE
- Females in MACE: the case of Ayrshire
- Research objectives
- Current status
- Implementation
- Key research areas
- Overview

Current MACE Methodology

The MACE method is a multi-trait animal model that takes the form below

The international predicted genetic merits is formed by the sum of the solutions, the phantom parent group, and the country effects.

MACE: Multiple Across Country Evaluations


BREED GROUPS

Holstein
Jersey
Guernsey
Red Dairy Cattle
Brown Swiss
Simmental

TRAIT GROUPS

- Production (3 traits: milk, protein, fat)
- Conformation (38 traits)
- Udder health (2 traits)
- Longevity (1)
- Calving (5)
- Female fertility (4)
- Workability (2)

Ayrshire Dairy Herds: A Special Case

Ayrshire

Moderate-sized breed, valued for *adaptability* and *milk quality*

Why Ayrshire:

Investigate the opportunity for international collaboration to increase the accuracy of genetic evaluations for Ayrshire across multiple countries

Benefits:

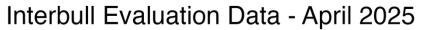
- Adding cow data would increase and allow faster growth of the current reference population
- Maximize the benefit from genotyping cows
- Reliability gains over time for both national and international genetic and genomic evaluations

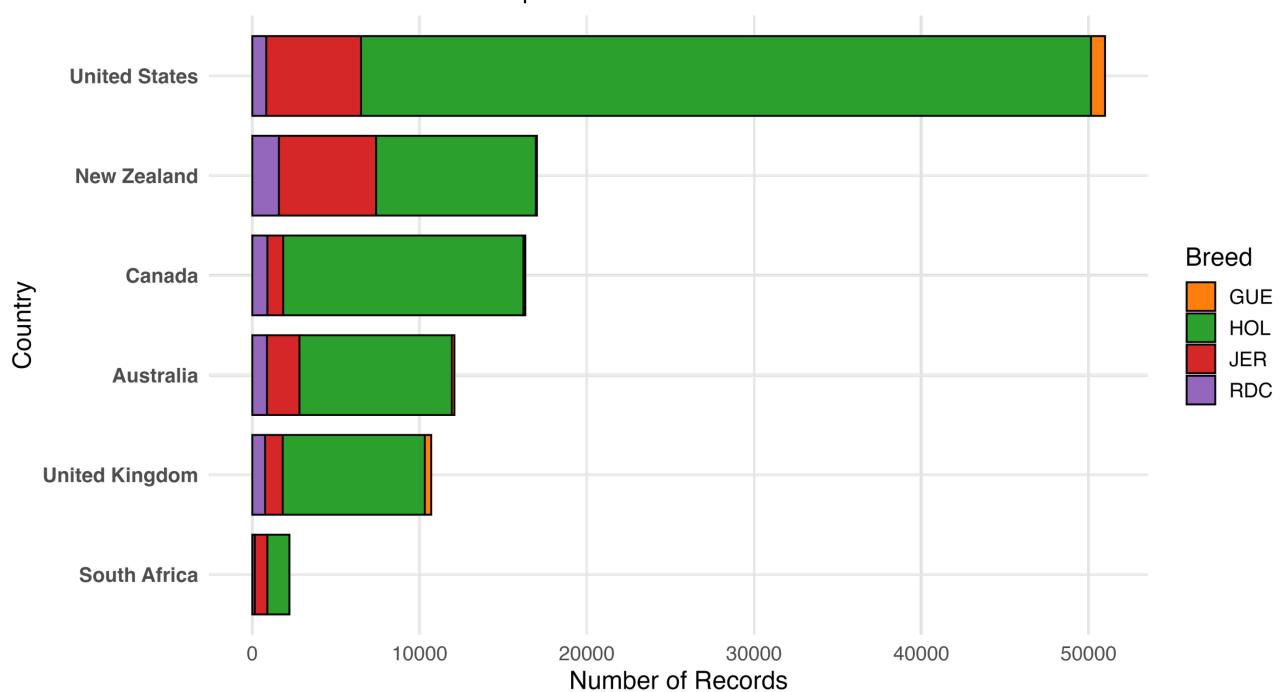
Objectives

Modify the current MACE pipeline to allow countries to submit national EBVs including cows

Inclusion of cows in MACE

Use Interbull's platforms for sharing Ayrshire data among participating countries


Provide both female and male MACE outputs to participating countries



Current Status

Number of Dairy Production Trait Records by Country and Breed

Source: Interbull centre

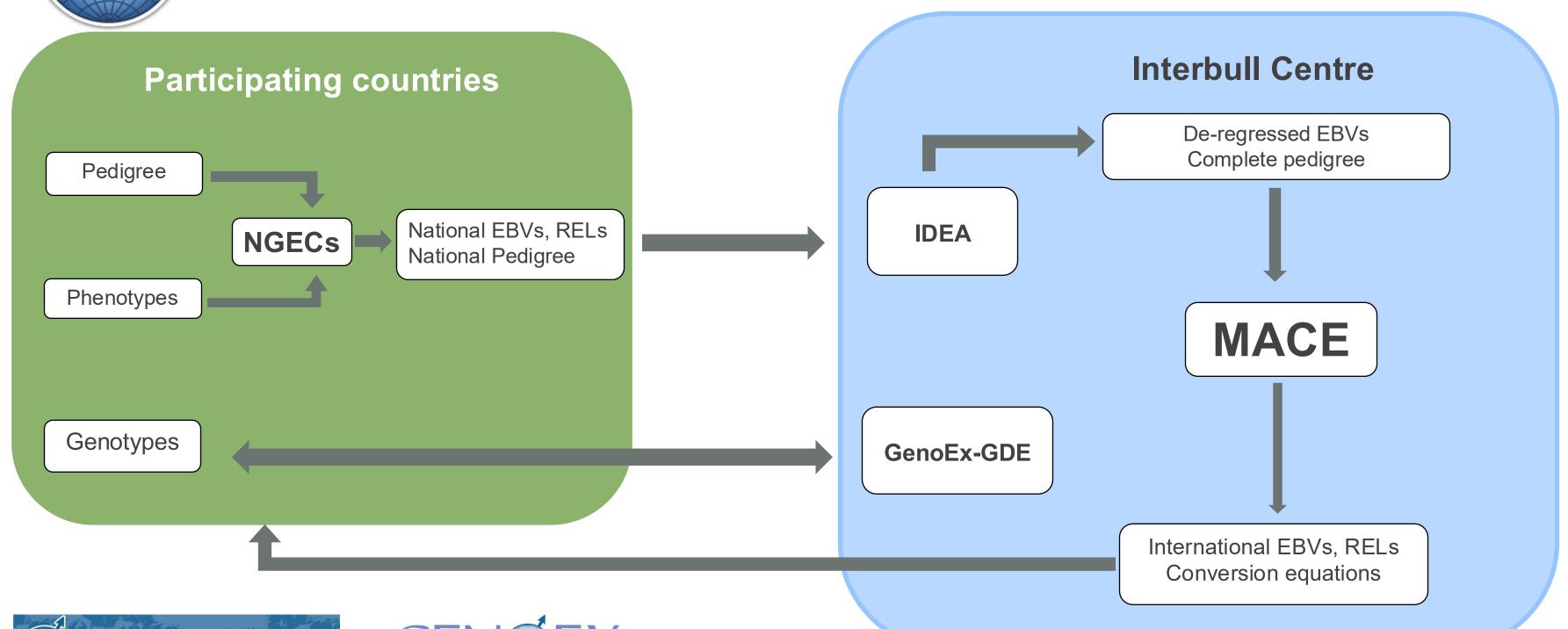
Current Status

Number of genotyped "Ayrshire" animals by country

Country	Female	Male	Total
Canada	8,670	1,806	10,476
United States	3,107	1,973	4,180
South Africa	2,761	19	2,780
New Zealand	2,105	41	2,146
United Kingdom	1,175	468	1,643
Australia	1,062	96	1,158
Columbia	N/A	N/A	N/A
TOTAL	18,880	4,403	22,383

Source: Brian Van Doormaal, 2024

Current Status


International Ayrshire genotypes by year of birth and sex as of 2024

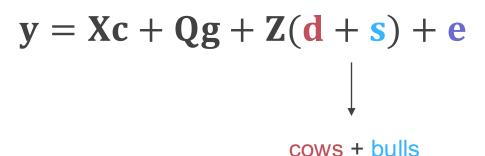
Birth Year		Male		Female	Total
Diftii fear	No	Group	No	Group	TOtal
2023	94		628	Young	722
2022	308	Valuad	2,131	2,759	2,439
2021	270	Young	2,493		2,763
2020	310	1,228	2,555		2,865
2019	246		2,094		2,340
2018	204		1,740		1,944
2017	242		1,329		1,571
2016	229		1,388	Deference	1,617
2015	241		1,425	Reference	1,666
2014	233	Reference	1,232	18,830	1,465
2013	216	2,980	1,007		1,223
2012	233		880		1,113
2011	116		618		734
2010	90		428		518
<2010	1,104		1,641		2,745

Implementation

Research Areas

Research agreement and data call

Required changes


✓ Modification of IDEA's Fortran program

Research Areas

Technical Issues to Investigate

- ✓ Minimum cow requirements;
 - Number of progeny
 - Reliability of cow EBV.
 - Number of herds
 - Status of the cow
- ✓ Best method to de-regress cow EBVs for MACE
- ✓ Possible bias, double counting
- √ Changes in reliability

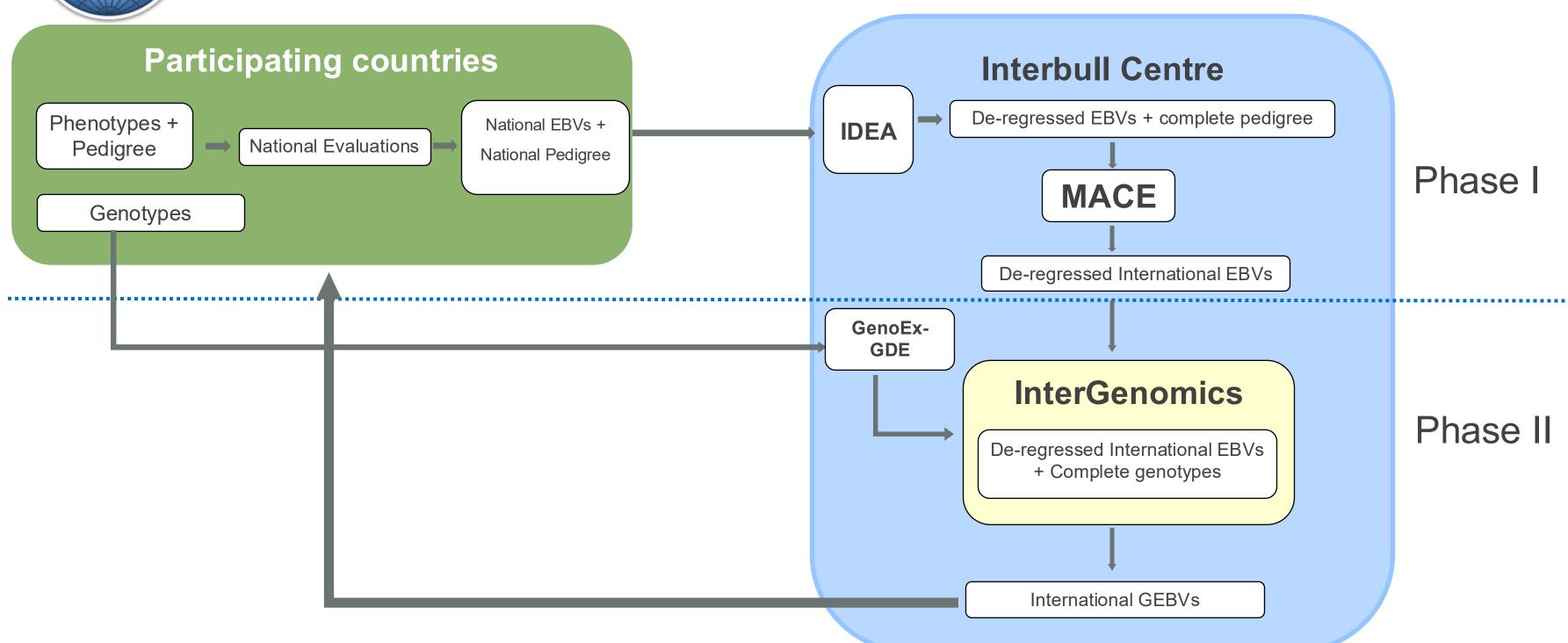
Current Progress

Year	Observ	vations	Min	imum	Max	imum	Mea	n	Stand. I	Dev.
	PRV	CUR	PRV	CUR	PRV	CUR	PRV	CUR	PRV	CUR
2015	1	1	91.112	*****	91.112	*****	91.112	*****	0.000	0.00
2016	1	1	-127.425	-0.000	-127.425	-0.000	-127.425	0.000	0.000	0.00
2017	2	2	704.847	358.000	992.740	424.000	848.794	391.000	203.571	46.66
BASIC Year		STICS FO		VIDED COW		IES	Mea	n	Stand. I	Dev.
							Mea PRV	n CUR	Stand. I PRV	Dev. CUR
	0bserv	vations	Min	imum	Max	imum				
Year	Observ PRV	vations CUR	Min PRV	imum CUR	Max PRV	imum CUR	PRV	CUR	PRV	CUR 0.00
ear 2015	Observ PRV 1	vations CUR 1	Min PRV 0.758	imum CUR 0.758	Max PRV 0.758	cimum CUR 0.758 0.000	PRV 0.758	CUR 0.758	PRV 0.000	CUR 0.00 0.00

Overview

Assessing the feasibility of including females in MACE

Investigate level of bias in MACE results


Assess the gain in reliability

Obtain unbiased MACE (both cows and bulls) proofs to be distributed to participating countries

Verify and adjust the current conversion equations

Opportunity: InterGenomics

Our Partners

Interbull is a permanent sub-committee of ICAR Log out Contact Us

About Us Join Us Services

EURC for Zootechnics News & Events Resources

Join Us!

Interbull > Join us

Interested in joining our services?

Our Services are provided within the framework of the International Committee for Animal Recording (ICAR) . If you are not an ICAR member, nor have the support of an ICAR Member, please check how to become a member of ICAR. The ICAR member does not have to be the same organization that handles national genetic data, though this may often be the case, but both have to be in agreement about joining our services.

If you are already a <u>member of ICAR</u> or have the support of an ICAR member, then you may take the next steps to join our services.

Contact Us

INDUSTRY EXPERIENCE

360 MILLION INTE BREEDING VALUES R PER YEAR II

www.interbull.org

Thank you