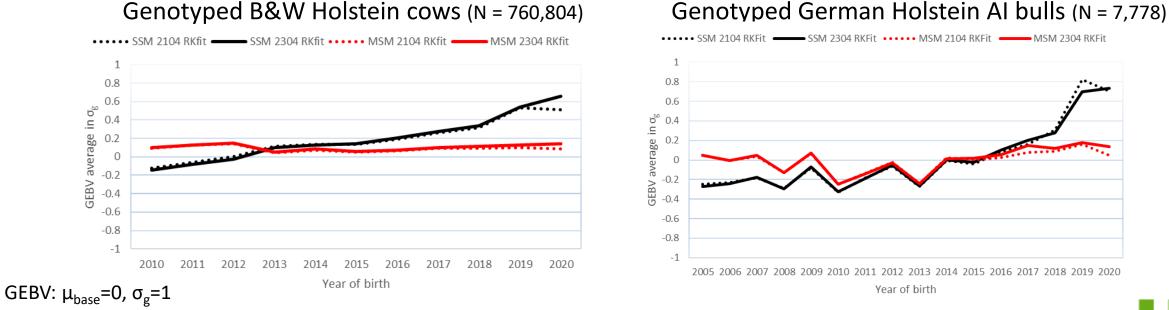
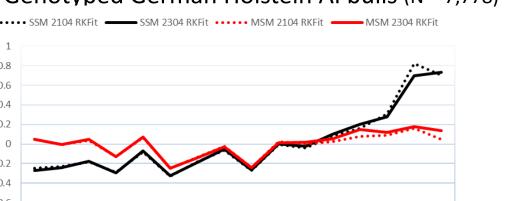


An optimized single-step SNP BLUP model for calf fitness in German Holstein

H. Alkhoder, Z. Liu, L. Polman, E. Pasman, J. Heise and R. Reents IT-Solutions for Animal Production (**vit**), Germany

A single-step genomic model for calf fitness


- A multi-trait linear animal model for calf survival from day 3 to 15 months (Heise et al. 2016)
- Defined in 5 periods (days 3 to 14, 15-60, 61-120, 121-200, 201-458) as correlated traits
 - Calf fitness index, $h^2 = 0.014$
 - Only female calves considered
 - A mixed reference population of the **multi-step model** for German Holstein
 - All genotyped female calves with own phenotypic records (deregressed EBV and ERC)
 - Dec 2024: 1,105,445 genotyped calves with phenotypic records
 - All genotyped sires of calves with phenotypic data (deregressed EBV and EDC):
 - Dec 2024: 13,212 genotyped bulls with calves
 - A single-step SNP BLUP model officially implemented for DEU Holstein in April 2025
 - For all evaluated traits (Johannes Heise's presentation)
 - Including a new, optimized model for calf fitness

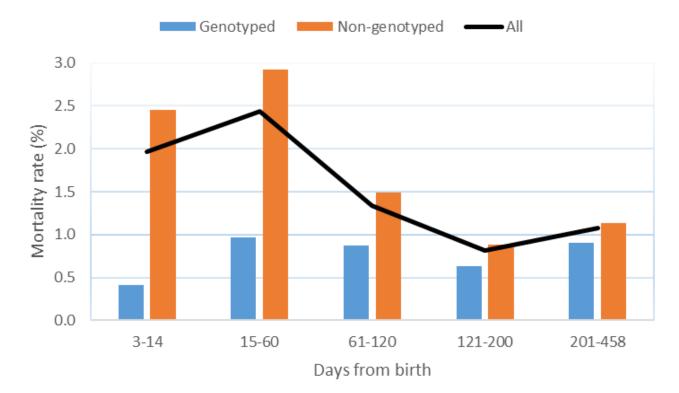


GEBV trend differences between the genomic models

- The original single-step model for calf fitness used genotypes of 1.8 million animals
 - Genomic validation conducted between April 2023 and April 2021
- Full evaluation 2304 (solid line) vs truncated evaluation 2104 (dotted line)
 - Single-Step Model (SSM) vs Multi-Step Model (MSM)
 - For animals with phenotypes GEBV of **MSM** are nearly equal to conventional EBV

Interbull meeting Louisville USA, 21.06.2025, Liu, Single-step model for calf fitness optimization

Earlier genomic validation results for calf fitness


- Genomic validations for the multi-step and single-step genomic models
 - Based on full evaluation Apr 2023 and truncated evaluation Apr 2021
 - 2-year data truncation due to the relatively short history of female genotyping
 - According to the LR test (Legarra and Reverter, 2018)
 - $u_{full} = b_0 + b_1^* u_{trunc} + e$
 - GEBV as dependent variable

Model	# validation bulls	R ² value	b_1 value
Single-step	355	0.61	1.04
Multi-step	355	0.40	0.92

- Validation bulls have lower reliabilities than most traits due to the low heritability
 - Between 0.5 and 0.6

- Holstein female calves in April 2025 single-step evaluation for calf fitness
 - 615,927 with own phenotype records
 - Genotyped: 148,427
 - Non-genotyped: 467,500

A special single-step model for the early-measured trait vit

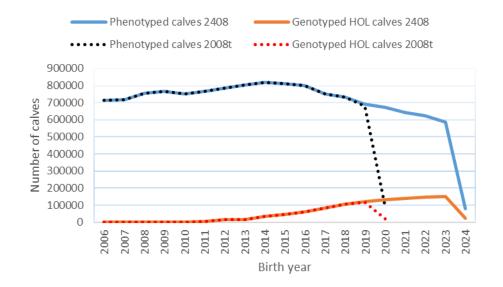
- Delayed genotyping seemed to have caused the wrong genetic trend
 - Some calves genotyped too late for first two periods
 - Genotyping not always done to dead or sick calves
- Sires have both survived and dead calves
 - Breeding values less impacted by the delayed or missing genotyping on the calves
- A special single-step model with a sire genotype population
 - Using only genotype data of sires of female calves with phenotypic records
 - No selection of the sires based on number of calves or herds
 - GEBV of all other genotyped animals / calves indirectly predicted as for weekly evaluation (Alkhoder et al. 2024)

Test runs: a full and truncated evaluation

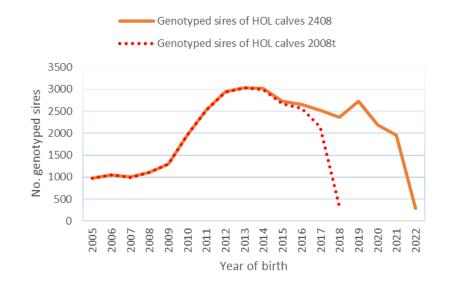
- A full single-step evaluation with data from Aug 2024 (2408)
- A truncated single-step evaluation with data from Aug 2020 (2008t)
- Single-step evaluations with all (incl. calves) genotypes

and with only sire genotypes

Genotype data for animals born in 2005 or later


Evaluation	Female calves with phenotypes	Genotyped Holstein female calves with phenotype	Genotyped Holstein sires
Full: Aug 2024	13,273,996	1,075,268	36,325
Truncated: Aug 2020	10,733,873	501,653	26,578
Ratio	81%	47%	73%

93% Holstein female calves with phenotype born in 2022 have a genotyped sire

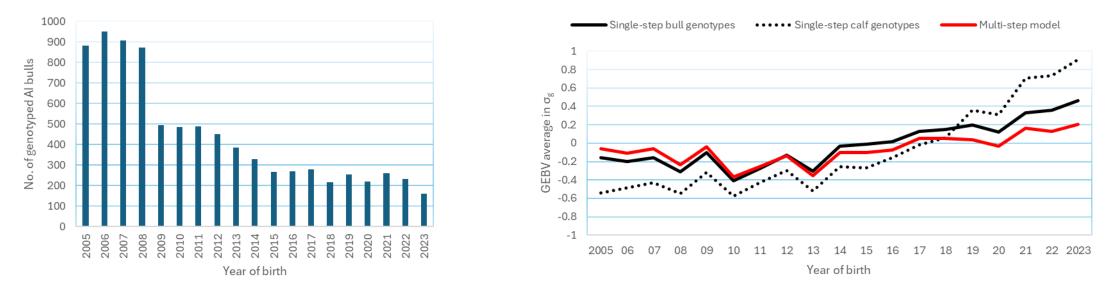

Two single-step models applied to both data sets

- Using genotypes of all animals / calves vs genotypes of sires of phenotyped calves
- Full evaluation 2408 vs truncated evaluation 2008t

Old model: using calf genotypes

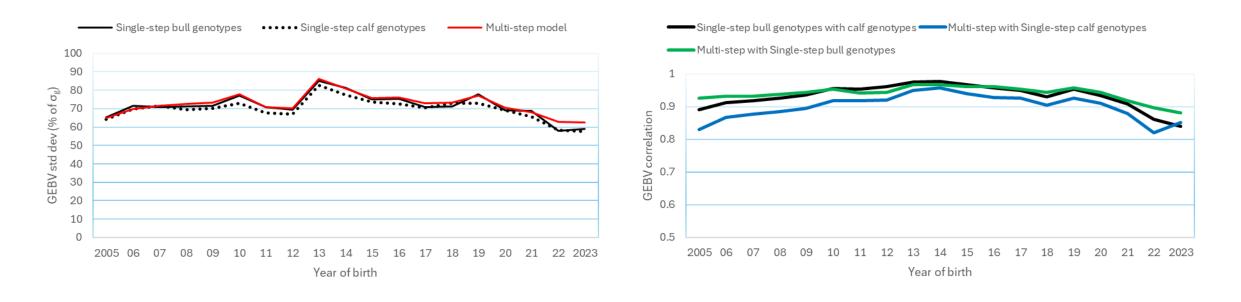
New model: using sire genotypes

Results: Validation via the GEBV Test software

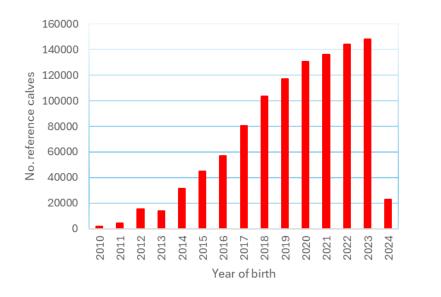

- Full single-step evaluation with genotype and phenotype data from August 2024
- Truncate phenotypic data in the last **4 years** (August 2000)
 - Participation in the October 2024 TMACE for all MACE traits
 - Evaluation also for national traits like calf fitness
- Genomic validation using Interbull's GEBV Test software (September 2024)
 - Two single-step models for calf fitness: using calf genotypes and sire genotypes only

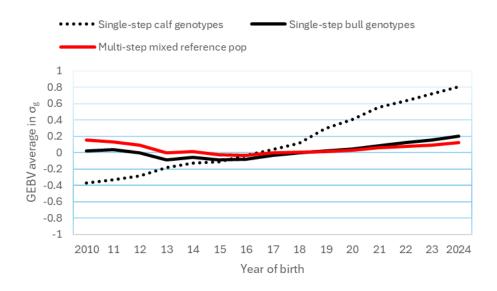
Deregressed GEBV as target	# validation bulls	R ² value	b_1 value	tests	Pass
Using only sire genotypes	980	0.191	0.954	YYYY	PASS
Using all (incl. calf) genotypes	980	0.164	0.849	NYNY	FAIL
GEBV as target	# validation bulls	R ² value	b ₁ value	tests	Pass
GEBV as target Using only sire genotypes	# validation bulls 980	R² value 0.444	b₁ value 0.963	tests YYYY	Pass PASS

Results: Trends in genotyped Holstein AI bulls


- 8,391 genotyped Holstein AI bulls owned by German AI studs born in 2005 to 2023
- **Single-step** evaluations with all (incl. calf) genotypes versus sire genotypes
- Multi-step evaluation with a mixed reference population of calves and bulls

- Standard deviations of GEBV of the single-step and multi-step models
- GEBV correlations between the models




10

Results: Trend in genotyped Holstein female calves

- 1,072,492 genotyped Holstein female calves with phenotypes born >= 2010
- **Single-step** evaluations with all (incl. calf) genotypes versus sire genotypes
- Multi-step evaluation with a mixed reference population of calves and bulls

Summary and Conclusions

- Single-step model using all genotype data may give biased GEBV for early-measured traits
 - Like calf fitness
 - With delayed genotyping or limited genotyping of dead calves
 - Even for the whole-herd genotyping scheme
- A solution to the biased single-step evaluation was to use only genotypes of sires
- Genomic validation of the new German single-step model for calf fitness
 - Via the new Interbull GEBV test software (deregressed GEBV as dependent variable)
 - Slightly higher R² value: 0.19 with sire genotypes versus 0.16 with all genotypes
 - Nearly unbiased: b₁=0.95 with sire genotypes versus b₁=0.85 with all genotypes
 - Reasonable and realistic genetic trends of the new single-step model
 - For genotyped AI bulls and female calves

Summary and Conclusions

- Genomic validation for the low heritability trait
 - Dependent variable: Deregressed GEBV clearly more appropriate than GEBV
 - 4-year data truncation preferred to 2-year data cut
 - In case of enough reference animals for the truncated evaluation
- Single-step evaluation bias in early-measured traits caused by genotyping
 - Removing SNP markers whose allele frequencies significantly changed
 - Reduced genetic trend of youngstock survival in Nordic evaluation (Nielsen et al., EuroGenetics 2025)
 - Calving trait Stillbirth using only sire genotypes
 - Implemented in the NLD single-step evaluation (Eding et al., EuroGenetics Nov 2024)
 - Sire reference population did not improve b_1 (Alkhoder et al. 2022, EAAP)

Vereinigte Informationssysteme Tierhaltung w.V. (vit) Heinrich-Schröder-Weg 1, 27283 Verden

Colleagues of Nordic Evaluation Center (NAV) are greatly acknowledged for a video meeting on 26th Sep 2024 on youngstock survival evaluation

Vielen Dank!

Thanks for your attention!