International bull evaluation by GBLUP with prediction population(s)

> Ignacy Misztal, Daniela Lourenco, University of Georgia

Breno Fragomeni, University of Connecticut

Heather Bradford, Virginia Tech

Interbull and genomics

- Before genomics: int'l evaluation based on proven sires and MT sire model
- With genomics
 - marketed mainly young sires
 - In-country evaluations more accurate
 - Now, Interbull source of external data
 - Compromised by genomic selection
- GBLUP MACE possible- if genotypes available
 - APY algorithm for inversion of G
- Idea of int'l MT SNP model (Goddard, 2011)
 - Each country contributes LHS and RHS of SNP BLUP
 - MT model with corr among countries < 1

Problems with SNP model

- Bigger countries not participating
 - Why give away results of large investments
- Attractive for smaller countries but
 - MT SNP model hard to do
 - Each country may have different SNP sets
 - Lots of data (LHS = 50k x 50k)

Genomic information

- SNP effects -what are they?
 - Estimates of causative SNP?
 - Markers to QTL?
 - Tags to important ancestors?
 - Nearly identical prediction with very different SNP chips
 - Indirect estimates of chromosome segments?
- Genomic info in reference population genotypes + (pseudo)phenotypes

Information content in different subpopulations of same population

Conjecture: all SNP effects equivalent = similar GEBV

Formulas

 $(D + \alpha G^{-1})\hat{u} = y$

GBLUP

- u = GEBV, y = DRP, α = variance ratio
- D = function of reliability

Conversion of GEBV to SNP effects a= SNP effects, Z = genotypes

 $y^* = (I + \alpha G^{-1}) Z \hat{a}$

Creating pseudo-observations for same SNP solutions y* = DRP for alternative populations

Real and alternative reference population

$$\widehat{SNP} = \frac{Z'G^{-1} * \widehat{GEBV}}{\sum_{i=1}^{m} 2p_i q_i}$$
 Conversion to SNP

GMACE with real and alternative populations

GBLUP-MACE algorithm

- Compute national SNP effects
- Create (or use Interbull) prediction population
- Create pseudo-phenotypes for prediction population(s)
- Use multiple-trait GBLUP for prediction population(s)
- Convert national GEBV into SNP effects

Simulation outline

30 k animals, 4 traits correlated at 0.8

Simulation

- QMSIMM
- h² = 0.25
- Ne=120
 - 30 males and 20k females/gen
 - 20 generations
 - Last 5 generations with phenotypes
- Mimicking bovine genome
- 500 QTL
- Validation in 5k young animals
 - Artificial population

- 4 traits
 - rel =71%
 - Genetic correlations 0.8

Analyses

- ST-GBLUP original population within country
- ST-ALTER alternative population within country
- MT-GBLUP across country with original populations
- MT-ALTER across countries with alternative population

Results – 5k animals in each country

	ST-GBLUP	ST-ALTER
COUNTRY1	0.82	0.81
COUNTRY2	0.83	0.83
COUNTRY3	0.84	0.83
COUNTRY4	0.82	0.82

Results – variable number of animals in each country : 5k - 2k - 2k - 1k

	ST-GBLUP	ST-ALTER
COUNTRY1 5K	0.81	0.80
COUNTRY2 2K	0.67	0.66
COUNTRY3 2K	0.68	0.68
COUNTRY4 1K	0.51	0.51

Accuracies with different number of genotyped animals in common

COMMON	ST-GBLUP	MT-GLUP	MT-ALTER
ANIMALS		-	-
		ST_GBLUP	ST_GBLUP
100%	0.84	+0.02	+0.00
50	0.81	+0.04	+0.03
0	0.83	+0.03	+0.02

What prediction population?

- Interbull prepares a prediction population with size > Me, i.e., > 12,000
 - * Genotypes include all SNP used by member countries
- 2. Each country prepares own prediction population
- 3. Combination

Comments

- Computational aspects
 - Upgrade MACE by replacing A⁻¹ by G_{APY}^{-1}
 - Double counting via by residual correlations
- Why loss of information?
 - Details?
 - Unfinished work?
 - Independent chromosome clusters of highly variable size
- Reluctance to share SNP effects
 - Release only fraction of information
 - Release only for less popular traits
 - Are SNP effects converging?

Advantages of GBLUP MACE

- SNP or GEBV on each country scale
- Everybody gains
- Gains for competition restricted
 - Extra gains possible with local blending and causative SNPs
- Easy implementation
- Future: GBLUP with original data

- GBLUP MACE possible without submitting original genotypes with alternative populations
- Computations simple, some theoretical work needed
- Some loss of information compared to combined prediction with original populations
- Perhaps good compromise

Acknowledgements

- Comments by H. Jorjani, Tom Lawlor, and Paul VanRaden
- Grant from Holsteins Assoc.
- AFRI grant 2015-67015-22936 from USDA NIFA

Possibilities of SNP model for selected countries

- Submit only SNP effects, # animals and avg reliabilities
- Output: SNP effects on each country scale
- Easy possibility of conversion between different SNP sets
- Simple computations

Assumptions

• Any set of genotyped animals produces asymptotically equivalent SNP effects

N subsets, index i u_i – breeding values a_i –SNP effects Z_i – Gene content

$$(\mathbf{Z}_{i}'\mathbf{Z}_{i} + \mathbf{I}\alpha) \ \widehat{\mathbf{a}_{i}} = \mathbf{Z}_{i}'\mathbf{y}$$

- $E(\mathbf{Z}_i \ \widehat{\mathbf{a}_i}) = \mathbf{u}_i$ With large population, estimable functions of SNP effects converge
- $E(\mathbf{Z}_{i} \ \widehat{\mathbf{a}_{i}}) = \mathbf{u}_{i}$ Estimates from one subset useful to other subsets

Algorithm

- Collect
 - **a**_i SNP effect from i-th country
 - n_i number of animals used to produce SNP efects
 - rel_i average reliability
- For each country:
 - Pick up n_i genotypes Z_i from same general population
 - For Holsteins, could be US Holstein cows or bulls
 - Calculate DGV of each animal:

- $\widehat{\mathbf{u}_i} = \mathbf{Z}_i \mathbf{a}_i$
- Using GBLUP, calculate pseudo-observations y_i
 - β_i function of h^2 and reliability

$$y_i = (\mathbf{Z}_i \ \mathbf{Z}'_i + \mathbf{I}\beta_i) \ \widehat{u_i}$$

- Run MT GBLUP
- Convert GEBV into SNP effects

Extras

- SNP effects could be for any SNP chip
 - After conversion to DGV, SNP chip is irrelevant
- Conversion back could be to any chip
 - Indirect formulas can use any chip

Questions

- Is algorithm sensitive to choice of genotyped animals?
 - May be more or less related
- Scaling issues for each country
- If low corr of DGV among countries, different traits or models?

Formulas

• For pseudo information

$$y_{ij} = \mu + u_{ij} + e_{ij}, \quad var(u_{ij}) = \sigma_u^2, var(e_{ij}) = \sigma_e^2$$

$$y_i = (\mathbf{Z}_i \ \mathbf{Z}'_i + \mathbf{I}\beta_i) \ \widehat{u_i}$$
 $\beta_i = \frac{\sigma_e^2}{\sigma_u^2}$

y is constructed based on assumed variances so any is good provided that it is used later Can use β =1