

MORE THAN MILK

Improving the Stability of the Test-Day Repeatability Model for Production Traits in Italian Brown Swiss

Rossoni A., Nicoletti C., Mozafari R., Santus E., Rezende M.

Introduction

- Since 2000: Test day model
- Repeatability model:
 - Many small herds (mountain area and mixed herds)
 - needs to provide a service to all farmers
- Since 2011: Genomic evaluation
- Since 2019: Single Step genomic Evaluation
 - Based on deregressed EBVs

Focus of the Study

• Assess the stability of genetic evaluations as the number of daughter records increases

Some examples:3 bulls

GEBV Variability Across Successive Evaluations

Which sires are involved?

- Bulls widely used as young genomic
- Bulls in high demand from the start of their use
- Bulls with strong appeal for breeders with high management levels

Possible sources of instability examined:

- High percentage of short lactations
- All test-day records from first-parity cows
- High percentage of cows that calved at a young age
- Non-random distribution of first daughters
 Issues with heterogeneity of variance

Interactions between herd and other fixed effect

Repeatability Model

Linear model used for genetic evaluation:

```
y = htd + Ye × nlat × age × dim × prg + pe + a + e
```

htd: Herd-Test-Day Ye: Year (quinquennium) nlat: Lactation number, age: Calving age dim: Days in milk prg: Pregnancy days

Repeatability Model

Linear model used for genetic evaluation:

 $y = htd + Ye \times L \times nlat \times age \times dim \times prg + pe + a + e$

htd: Herd-Test-Day
Ye: Year (quinquennium)
nlat: Lactation number,
age: Calving age
dim: Days in milk
prg: Pregnancy days

L: Herd level (primiparous vs multiparous gap)

herd level (production gap Primiparous vs Pluriparous) Average of estimate effect for the H

Level definition:

Average production difference between first-parity and multiparous cows over the three years prior to the test year.

Editing criteria:

At least 5 completed lactations per year for both first-parity and multiparous cows.

Level limits:

- High: Top 25% of herds with the largest differences
- Low: Bottom 25% of herds with the smallest differences
- Medium: All remaining herds

Why Do Bulls Show Different Trends?

Why Do Bulls Show Different Trends?

Correlation between years

Bulls with the greatest difference between the 2024 and 2020 evaluations

WHY IN ITALIAN BROWN SWISS?

WHY IN ITALIAN BROWN SWISS?

- High variability in management level
- Intensive use of genomic bulls
- We are among the few using an evaluation based on daily test-day records with a repeatability model

MORE THAN MILK

Thak you for your attention