GENOMIC PREDICTION OF METHANE EMISSIONS IN DANISH HOLSTEIN USING SINGLE STEP AND MULTI-TRAIT PREDICTION MODELS

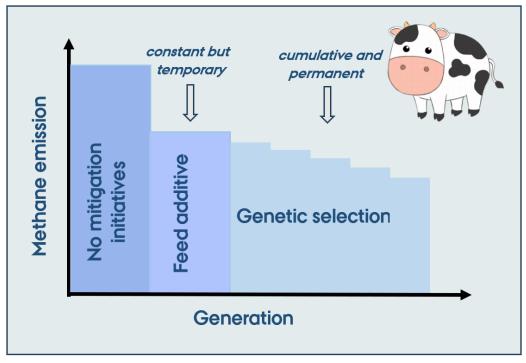
H. SCHNEIDER^{1,3}, R.B. STEPHANSEN¹, M. BJERRING², P. LØVENDAHL¹, M.S. LUND¹, T.M. VILLUMSEN¹

¹CENTER FOR QUANTITATIVE GENETICS AND GENOMICS, AARHUS UNIVERSITY, DENMARK ²DEPARTMENT OF ANIMAL AND VETERINARY SCIENCES, AARHUS UNIVERSITY, DENMARK ³PRESENT ADDRESS: SEGES INNOVATION, DENMARK

BACKGROUND

→ Mitigation strategies to **reduce** methane emissions urgently required

(e.g., feed additives, genetic selection,...)



Generated with Microsoft Copilot

BACKGROUND

→ Mitigation strategies to reduce methane emissions urgently required (e.g., feed additives, genetic selection,...)

first breeding values for methane emissions published in **May 2025**

BACKGROUND

Problem: Still primarily small datasets (limits prediction accuracy & genetic progress)

Prediction accuracies have earlier been shown to benefit from

- 1. Simultaneous use of genotypic, phenotypic and pedigree information: single step genomic prediction (**ssGBLUP**)
- 2. Exploiting genetic information from correlated traits: multi-trait prediction

AIM OF THIS STUDY

Evaluate **predictive ability** for methane concentrations (MeC) of

- 1. pedigree-based BLUP (**pBLUP**) and **ssGBLUP**
- 2. univariate and multi-trait models using fat yield (FY) and energy corrected milk yield (ECM) as predictor traits
- → Data splitted into growing (primiparous, PP) and matured (multiparous, MP) cows to account for different correlation structures

Danish Holstein cows from 15 commercial herds

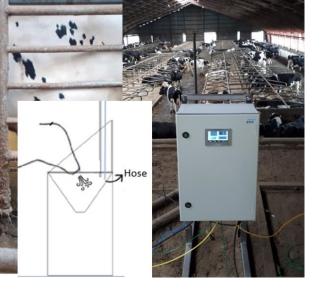
- 1,744 PP cows with 182,288 daily observations
- 2,989 MP (2nd to 8th parity) cows with 424,888 daily observations
- \rightarrow between March 2021 and December 2024

• Pedigree (47,383 animals) and genotypes (46,342 SNPs) provided by Danish Cattle Database (SEGES Innovation, Skejby, Denmark)

- Pedigree (47,383 animals) and genotypes (46,342 SNPs) provided by Danish Cattle Database (SEGES Innovation, Skejby, Denmark)
- MeC recorded using sniffers (Guardian NG, Edinburgh Sensors, Livingston, UK)

- Pedigree (47,383 animals) and genotypes (46,342 SNPs) provided by Danish Cattle Database (SEGES Innovation, Skejby, Denmark)
- MeC recorded using sniffers
 (Guardian NG, Edinburgh Sensors, Livingston, UK)

Sniffer technology has already been applied in e.g. Lassen and Løvendahl, (2016), Manzanilla-Pech et al., (2020), Løvendahl et al., (2024)



- Pedigree and genotypes provided by Danish Cattle Database (SEGES Innovation, Skejby, Denmark)
- MeC recorded using sniffers (Guardian NG, Edinburgh Sensors, Livingston, UK)
- Milk production data obtained from milking robots (milk yield, MY) and the Danish Cattle Database (milk components). ECM was calculated as

$$ECM(kg) = 0.25 * MY(kg) + 12.2 * FY(kg) + 7.7 * PY(kg)$$

(Sjaunja et al., 1991)

Pedigree-based repeatability model

1. Variance component estimation for PP and MP cows, separately, using AI-REML algorithm in the DMU software (Madsen and Jensen, 2014)

 $y = X\beta + Za + Wpe + Ie$

- y vector of phenotypic observations for MeC, ECM, and FY
- β vector of fixed effects (WIM; AFC for PP cows, parity for MP cows; herd-year-season (HYS) × AMS × sniffer for MeC, HYS for ECM and FY)
- *X* corresponding incidence matrix

Pedigree-based repeatability model

1. Variance component estimation for PP and MP cows, separately, using AI-REML algorithm in the DMU software (Madsen and Jensen, 2014)

 $y = X\beta + Za + Wpe + Ie$

- a random additive genetic effect with $a \sim N(0, A\sigma_a^2)$ and corresponding incidence matrix Z
- *pe* random permanent environmental effect with $pe \sim N(0, I\sigma_{pe}^2)$ and corresponding matrix *W*
- *e* residual term with $e \sim N(0, I\sigma_e^2)$

2. GEBV estimation for MeC using DMU and the same fixed and random effects as in the variance component estimation

- \rightarrow Different pBLUP and ssGBLUP scenarios
- \rightarrow Different univariate and multi-trait scenarios

GEBV estimation

		Information included in			
Traits included in GEBV estimation	Type of analysis	validation population	reference population		
MeC	Univariate	-	MeC		
MeC-FY	Bivariate	FY -	MeC, FY		
MeC-ECM	Bivariate	ECM -	MeC, ECM		
MeC-ECM-FY	Trivariate	ECM, FY	MeC, ECM, FY		

2. GEBV estimation for MeC - Calculation of inverse of the H matrix for ssGBLUP (Aguilar et al., 2010; Christensen and Lund, 2010)

$$\boldsymbol{H}^{-1} = \boldsymbol{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & (\omega \boldsymbol{G} + (1 - \omega) \boldsymbol{A}_{22})^{-1} - \boldsymbol{A}_{22}^{-1} \end{bmatrix}$$

- **G** genomic relationship matrix (VanRaden, 2008); computed using the invgmatrix software (Su and Madsen, 2011)
- A_{22} pedigree relationship matrix for genotyped animals
- ω weight assigned to the genomic information (0.8)

Accuracy calculation using a 10-fold cross-validation set-up (by sire)

1. Adjusted phenotypes for MeC computed as estimated genetic + permanent environmental effects from the full dataset

Formula adapted from Mrode (2013), accounting for repeated records

Accuracy calculation using a 10-fold cross-validation set-up (by sire)

2. Accuracies per cross-validation group calculated as

Accuracy =
$$\frac{r}{\sqrt{\frac{nh^2}{\sqrt{1+(n-1)t}}}}$$

- r correlation between the adjusted phenotype and GEBV
- *n* average amount of repeated records for each animal
- $h^2(t)$ heritability (repeatability) of MeC

Accuracy calculation using a 10-fold cross-validation set-up (by sire)

- 3. Accuracy for each scenario calculated as the average of all crossvalidation groups
- 4. Corresponding standard errors were obtained by dividing the standard deviation of accuracies across cross-validation groups by the square root of the number of validation groups (10)

Variance component estimates

Tuait	Primiparous			Multiparous		
Trait	h^2	t	r_g with MeC	h^2	t	r_g with MeC
MeC	0.17 (0.03)	0.32 (0.01)		0.17 (0.02)	0.32 (0.01)	
ECM	0.38 (0.06)	0.81 (0.01)	0.15 (0.13)	0.24 (0.03)	0.74 (0.01)	0.41 (0.09)
FY	0.31 (0.06)	0.74 (0.01)	0.18 (0.13)	0.20 (0.03)	0.65 (0.01)	0.37 (0.09)

 r_g for MeC between PP and MP cows **0.78** (SE: 0.12)

 \rightarrow Only 580 cows in common between both groups

Variance component estimation

Tue	Primiparous			Multiparous		
Trait	h^2	t	r_g with MeC	h^2	t	r_g with MeC
MeC	0.17 (0.03)	0.32 (0.01)		0.17 (0.02)	0.32 (0.01)	
ECM	0.38 (0.06)	0.81 (0.01)	0.15 (0.13)	0.24 (0.03)	0.74 (0.01)	0.41 (0.09)
FY	0.31 (0.06)	0.74 (0.01)	0.18 (0.13)	0.20 (0.03)	0.65 (0.01)	0.37 (0.09)

MeC: h^2 0.11 to 0.18 and t 0.27 to 0.41 (van Engelen et al., 2018; van Breukelen et al., 2024) ECM: h^2 0.26 to 0.37 (Li et al., 2018)

Positive r_g is unfavorable!

→ Selecting for lower methane emissions leads to reduced milk production

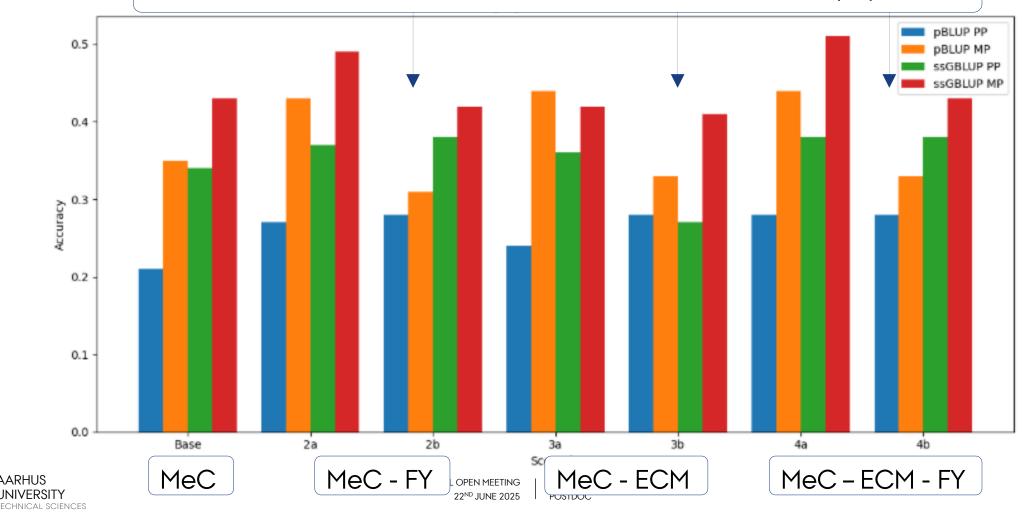
Variance component estimation

Tualt	Primiparous			Multiparous		
Trait	h^2	t	r_g with MeC	h^2	t	r_g with MeC
MeC	0.17 (0.03)	0.32 (0.01)		0.17 (0.02)	0.32 (0.01)	
ECM	0.38 (0.06)	0.81 (0.01)	0.15 (0.13)	0.24 (0.03)	0.74 (0.01)	0.41 (0.09)
FY	0.31 (0.06)	0.74 (0.01)	0.18 (0.13)	0.20 (0.03)	0.65 (0.01)	0.37 (0.09)

 r_g 0.35 between MeC and ECM (Manzanilla-Pech et al., 2022)

Correlation of 0.27 between GEBV for MeC and FY (Lopez-Paredes et al., 2020)

No information for ECM and FY in reference and validation population



Accuracies of GEBV obtained using

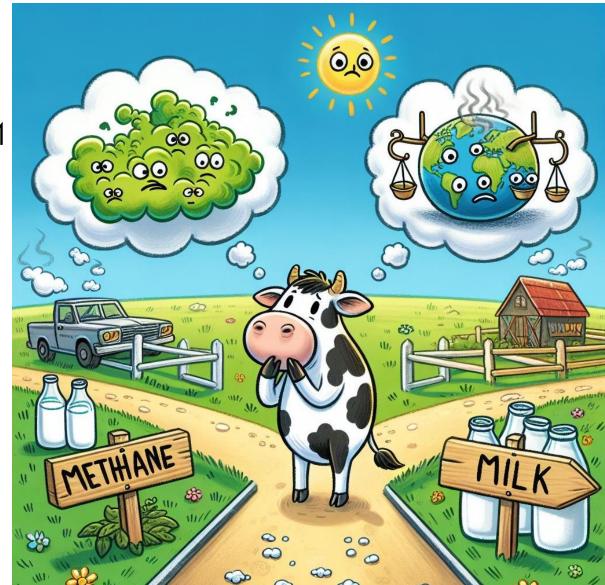
• ssGBLUP were mostly higher than those obtained using pBLUP, in line with previous results in dairy cattle (Hayes and Goddard, 2008; VanRaden et al., 2009)

Accuracies of GEBV obtained using

- ssGBLUP were mostly higher than those obtained using pBLUP, in line with previous results in dairy cattle (Hayes and Goddard, 2008; VanRaden et al., 2009)
- multi-trait prediction scenarios mostly higher than univariate scenarios, in line with e.g. Tsuruta et al. (2011) for linear type traits.
- → Most improvement when phenotypic information for ECM and FY available in reference and validation populations, has also earlier been shown (Pszczola et al., 2013)

CONCLUSION

- SSGBLUP and multi-trait models with ECM and FY records can improve accuracy of MeC breeding values
- However: genetic correlations between FY, ECM and MeC is unfavorable
- → Genetic gain in MeC based on these models might be at the expense of milk production



Generated with Microsoft Copilot

RASMUS BAK STEPHANSEN POSTDOC

PERSPECTIVES

Further efforts are needed to

- Record methane emissions in more animals
- → Supported by (international) projects like GMG

- Develop a methane emission trait that is genetically independent from economically important, correlated traits like FY or ECM
- Design a multi-trait selection index including all economically important traits

22ND JUNE 2025

ACKNOWLEDGEMENTS

This study is part of GUDP-funded project "ONIMIT: On-farm monitoring of methane from dairy cows is a prerequisite for the implementation of mitigation strategies on animal, farm and national level"

