

Renewed Genetic Evaluation of Heat Tolerance in Italian Holsteins

Jan-Thijs van Kaam¹, Raffaella Finocchiaro¹, Ferdinando Galluzzo¹,², Maurizio Marusi¹, Martino Cassandro¹,³

Interbull Annual Meeting, 21-22 June 2025, Louisville, Kentucky

your COW our FUTURE ¹ Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ) – Via Bergamo 292, Cremona Italy
 ² Dipartimento di Scienze Mediche Veterinarie – Alma Mater Studiorum Università di Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Italy
 ³ Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE), Università di Padova, Viale delle Università 16, Legnaro (PD), Italy

Why heat stress matters?

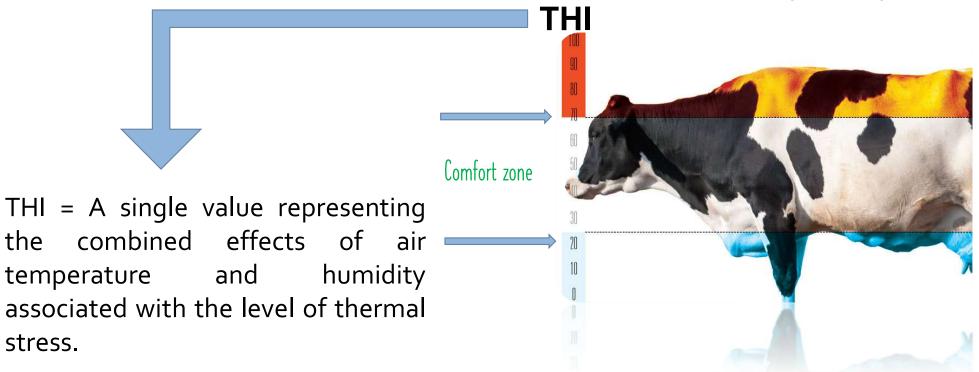
- Heat stress reduces milk yield, fertility, and animal welfare.
- Rising temperatures make heat stress a growing concern.
- Genetic solutions are needed to breed more resilient cows.


your COW

our FUTURE

How is the heat affecting Italy?

Milk production Summer and Winter



Dairy cows and heat stress

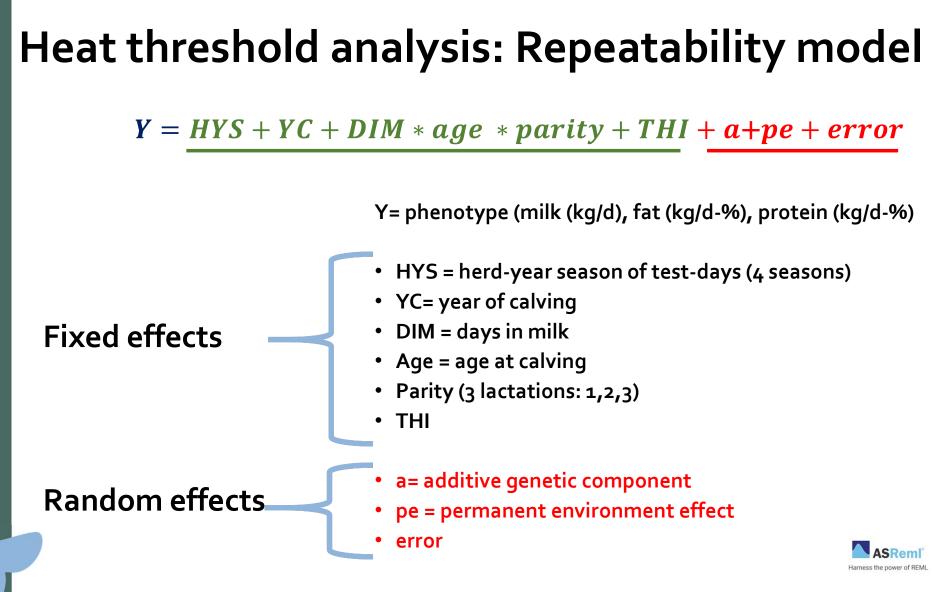
Heat stress results from a combination of environmental factors that exceed a cow's comfort zone and the cow's ability to keep cool.

$$THI = \{T_{Max} - [0.55 \times (1 - RH)] \times (T_{Max} - 14.4)\}$$
 (Kelly & Bond, 1971)

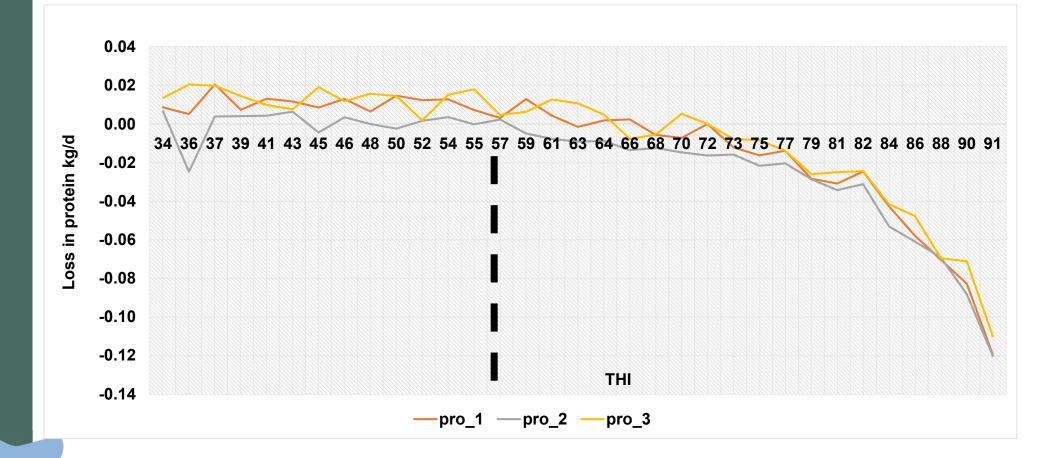
Weather Data-Set

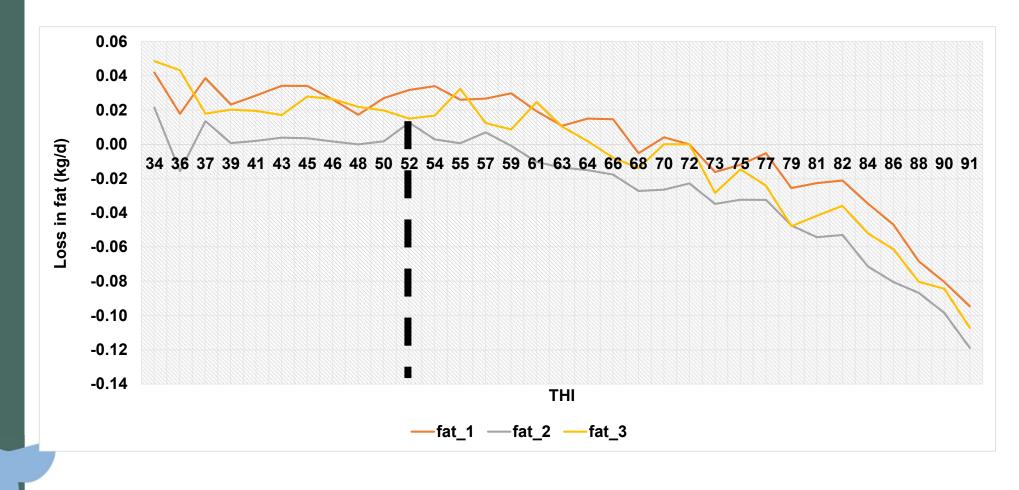
Weather data since 1994 (Max T C° & relative humidity)/day) THI (Kelly & Bond, 1971)

- Weather stations (n=137) \rightarrow
- Latitude/Longitude Coordinates
- Herds \rightarrow Municipalities \rightarrow
- Latitude/Longitude Coordinates
- For each herd → average 2,3 weather stations with average distance 13,5 km
- 2. 7-day average THI was used
- 3. To each test-day THI data added


Previous work and new goals

- Previous HT index focused on kg milk only (2021)
- New evaluation includes milk (kg), fat (kg and %) and protein (kg and %)
- Objectives:
 - Determine THI thresholds for milk traits declining
 - Estimate HT traits heritabilities
 - Calculate breeding values for all five milk traits


our COW


AT

your **COW** our **FUTU<u>RE</u>**

Heat threshold results – Fat kg/d

Genotype*Environment interaction (GXE)

Random effects were regressed on a function of THI

$$f\left(THI
ight) = \left\{egin{array}{cc} 0, & ext{THI} \leq ext{THI}_{ ext{threshold}} & (ext{no heat stress}) \ & ext{THI} - ext{THI}_{ ext{threshold}}, & ext{THI} > ext{THI}_{ ext{threshold}} & (ext{heat stress}) \end{array}
ight.$$

			_		
Milk production traits	Threshold level	ce			
Milk (kg/d)	70	Performance	No stress	Stress	
Protein (kg/d)	59	orn			
Fat (kg/d)	52	Perl			
Protein (%/d)	55				
Fat (%/d)	52				
		. ,	<u> </u>	<u> </u>	_ _{cow3} THI →

Heat threshold analysis: Repeatability model $Y = HYS + YC + DIM * age * parity + a + \alpha(f(THI)) + pe + \beta(f(THI)) + e$ Y = phenotype (milk (kg/d), fat (kg/d-%), protein (kg/d-%) • HYS = herd-year season of test-days (4 seasons) YC= year of calving **Fixed** • DIM = days in milk effects • Age = age at calving Parity (3 lactations) General animal genetic merit a= additive genetic component $\alpha(f(THI))$ = heat tolerance genetic effect Heat tolerance genetic merit Random pe = permanent environment effect effects $\beta(f(THI))$ = heat tolerance permanent environmental effect error our COW our **Future**

Correlations

Relationship between general genetic merit and heat tolerance genetic merit of production

Trait	Genetic animal effect * THI	Environmental effect * THI	Heritability
Milk (kg/d)	-0,51	-0,40	0,16
Protein (kg/d)	-0,48	-0,47	0,13
Fat (kg/d)	-0,42	-0,54	0,12
Protein (%/d)	-0,43	-0,51	0,37
Fat (%/d)	-0,50	-0,54	0,26

Negative correlations indicate opposing relationship, but they are moderate

Heat Tolerance EBVs

• Standardized mean 100 and DS 5

- Genomic evaluation for single index and later combined in an Aggregate index
 - 1. Milk (kg/d)
 - 2. Fat (kg/d)
 - 3. Protein (kg/d)
 - 4. Fat (%/d)
 - 5. Protein (%/d)

Aggregate index				
Single EBVs	Weight			
IHT milk (kg/d)	25%			
IHT fat (kg/d)	15%			
IHT protein (kg/d)	45%			
IHT fat (%)	5%			
IHT protein (%)	10%			

Comparison of High vs. Low HT Bulls – Summer vs. Winter Milk Yield

Identified bulls with > 1000 daughters

	HT ≥ 105 (High Tolerance)
Summer milk (kg/d)	30.05
Winter milk (kg/d)	30.38
Difference (kg/d)	-0.33
	HT ≤ 95 (Low Tolerance)
Summer milk (kg/d)	29.90
Winter milk (kg/d)	31.14
Difference (kg/d)	-1.24

Difference between the two losses: Δ Difference = -0.33-(-1.24) = +0.91 kg/day

Daughters of bulls with high heat tolerance (**HT** ≥ 105) lose 0.91 kg/day milk less in summer compared to daughters of bulls with low heat tolerance (**HT** ≤ 95).

