Weighted single-step genome-wide association studies for methane intensity in Chinese Holstein cattle

June 22nd 2025 Interbull

Yehua Ma, <u>Ao Wang</u>, Hailiang Zhang, Yachun Wang*

China Agricultural University, College of Animal Science and Technology

Yehua Ma	(1685307450@qq.com)
Yachun Wang	(wangyachun@cau.edu.cn)

Introduction

A non-ignorable source of greenhouse emissions in the agricultural field is

Methane intensity (MeI) refers to the CH₄ per kilogram of output product (e.g.

milk, g/kg). It strongly dependent on milk production and the energy requirements

Introduction

Two measurement methods used in our study are as follows:

Sniffer

convenient, sufficient reliable Sniffers measure the concentration of gas
Usually installed in the feed bin of automatic milking system (AMS)

collector

Indirectly (prediction)

Mid-infrared spectra (MIRS) Simple to collect, high through-put

•Widely reported to have potential for predicting methane emission traits

In China, Livestock production accounts for 24% of CH₄ emissions

Over the past 30 years, CH_4 emissions from China's livestock sector ranged from 9.7 \pm 2.2 Mt to 16.9 \pm 2.3 Mt

Among all the animals, contribution of dairy cattle's emission increased from 1.9% to 7%

Methane emission

1 To measure sniffer-based methane intensity and predict methane intensity based on MIRS in Chinese Holstein population

(2) To estimate genetic parameters for methane intensity

③ To identify candidate genomic regions for methane intensity

Materials & Methods

Quality control : Elimination of measurement days on which the machine may broken

Data covered 138 days, 20 weeks, 6 220 tests, 208 cows from 2 farms with 5 sniffers

CO2 production (g/d) was estimated based on the "On-farm model" developed by Kjeldsen et al. 2023. The following information were used:

Weekly average methane intensity was used as phenotype in this study Finally, 758 weekly averages were retained for subsequent analyses

Materials & Methods

Trait	Mean	SD	Max	Min
Mel (g/kg)	7.22	1.99	15.04	3.11

The evaluation for	T
prediction formula via	I
10-fold cross-validation	<u> </u>

rait	R2	RMSE
/lel	0.66	1.25

Acceptable	precise for
discriminati	ng high and low group

Trait	Mean	SD	Max	Min
PMeI (g/kg)	7.67	1.52	13.62	3.14

trait	h²	repeatability	σ _a	σ_{pe}	σ _e
PMeI (g/kg)	0.15±0.04	0.42±0.02	0.19±0.05	0.33 ± 0.04	0.71±0.02

PMel has moderate heritability

PMel has moderate repeatability

Results: ③ WssGWAS

Eleven 10-SNP regions explaining more than 0.15% of the genetic variance were identified on BTA1, 5, 8, 15, 19, 20, 24, 26, and 27, which contained 19 protein-coding genes. These regions explained 2.17% of the genomic variation

Chromosome	Region	Genetic variance explained, %	Trait associated
1	20.03-20.29	0.20	MP
5	44.96-45.20	0.15	MF, MY
24	47.10-47.32	0.16	MF
24	56.77-56.93	0.22	MP, BW
26	19.74-20.23	0.19	MF, MP

MP: milk protein, MF: milk fat, MY: milk yield, BW: body weight

(1) It is feasible to use sniffers and MIRS to measure and predict large-scale methane intensity traits, but strict data processing is required

(2) Methane intensity has moderate heritability in Chinese Holstein populations

However, these results are **very preliminary** and require further exploration We will expend the research population and use **transcriptomics** for gene validation

Thanks for all the support from:

Team 459 in China Agricultural University

Aarhus University

Beijing Sunlon Livestock

Project of National Key R&D Program of China (2022YFE0115700)

Thanks for your attention! Q&A

For more details, please contact:Yehua Ma(1685307450@qq.com)Yachun Wang (wangyachun@cau.edu.cn)

