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Summary

Genomic selection is producing profound changes in dairy cattle markets
since reliable breeding values, which double the reliability of the pedigree
index, can be obtained earlier in an animal’s life. As a result, genetic gains of
properly designed genomic programs are considerably larger than genetic
gains obtained with traditional approaches. The industry has introduced this

new tool all around the world faster than any other previous improvement.

This thesis contains six chapters, in which initial stages for the
implementation of genomic selection program in Spanish Holstein
population were studied using simulations and real data. In Spain, the initial
interest began in 2008 (Gonzalez-Recio et al.,, 2008), when the results
obtained by VanRaden, (2008) were used to involve the Spanish industry in
genomic selection. This research has been used to obtain the official

genomic breeding values and implement the imputation of genotypes.

The global aim of this thesis was to contribute practical recommendations
for implementing genomic selection in the Spanish dairy cattle. The specific
objectives were: (1) To study alternative genotyping strategies for small
populations, (2) to develop and validate methods for the evaluation of large
data sets of genotypes, and (3) to study the effect of imputation on predictive

ability.

The main topics with respect to genomic selection in dairy cattle were
discussed in chapter 1 including: genetic and statistical aspects underlying
genomic selection, design of proper reference populations (RP), review of
methodology  for  genome-assisted evaluation, imputation, and
implementation of genomic selection in dairy cattle breeding programs.
Breeding values with medium high accuracies are now available early in the
life of the animals. This is modifying one of the traditional principles of

dairy markets: the strong preference for highly reliable bulls.
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In chapter 2, a simulation study was carried out comparing female-selective
genotyping strategies with traditional pedigree index and a bull RP. The
Spanish male RP has 1,600 genotypes, which is not large enough to provide
reliable predictions. Alternatives should be evaluated to improve predictive
ability. The accuracy of predicted genomic breeding values using as
reference animlas in both extrems of the phenotypic distribution was better
than the accuracy obtained using other strategies (0.50 and 0.63 Pearson
correlation units using yield deviations as phenotype and 0.48 and 0.63 using
breeding values in low- and medium-heritability scenarios, respectively,
using 1,000 genotyped cows). When 996 genotyped bulls were used as the
training population, the use of progeny tested bulls as reference population
led to accuracies of 0.48 and 0.55 for low- and medium-heritability traits,
respectively. The most informative strategy involved genotyping of females
that exhibited upper and lower extreme values within the distribution.

Including just top animals resulted in poor results.

Several methods for implementing genome assisted evaluations were
compared in Chapter 3. Methods including marker regression included
Bayesian methods (Bayes-A, Bayesian LASSO) and Machine Learning
approaches as Random Boosting (R-Boost). G-BLUP was also utilized using
the genomic relationship matrix. The Spanish RP was used to compare those
methods in terms of predictive ability and bias. Genomic predictions were
more accurate than traditional pedigree indices for predicting future progeny
test results of young bulls. The gain in accuracy, due to inclusion of genomic
data, varied by trait and ranged from 0.04 to 0.42 Pearson correlation units.
Results averaged across traits showed that Bayesian LASSO had the highest
accuracy with an advantage of 0.01, 0.03 and 0.03 points in Pearson
correlation compared with R-Boost, Bayes-A, and G-BLUP, respectively.
The B-LASSO predictions also showed the least biased predictions (0.02,
0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP,

-11 -
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respectively), measured as the mean difference between genomic predictions
and progeny test results. The R-Boost algorithm provided genomic
predictions with regression coefficients closer to unity, for four out of five
traits and also resulted in mean squared error estimates that were 2%, 10%,
and 12% smaller than B- LASSO, Bayes-A, and G-BLUP, respectively. R-
Boost seemed to be a competitive marker regression methodology in terms

of predictive ability.

Chapter 4 describes the R-Boost algorithm tested in Chapter 3 for genomic
evaluations in large data sets. After joining the Eurogenomics consortium
with more than 22,000 bulls in the RP, a feasible method with reasonable
computation times, and no impaired predictive ability was required. The
random boosting uses a random selection of markers to add a subsequent
weak learner to the predictive model. Optimization of the algorithm and
behavior of tuning parameters was tested in real dairy cattle data. Those
tuning parameters control the percentage of single nucleotide
polymorphisms (SNP) sampled per iteration and the level of shrinkage over
the regression coefficient estimation. The proposed modification of the
original boosting algorithm can be run in 1% of the time used with the

original algorithm, and with negligible differences in accuracy and bias.

In Chapter 5, genotypes from the GoldenGate Bovine 3K and BovineLD
BeadChip for 834 animals were imputed to a BovineSNP50v2 BeadChip
using Beagle. Those genotypes were subsequently imputed to the BovineHD
BeadChip. Predictive ability of imputed and native genotypes as RP in
genome-assisted evaluations was compared using G-BLUP and R-Boost.
Imputed low density genotypes achieved similar predictive ability than
native genotypes. However, marginal better selection efficiency was
obtained after imputation to HD (0.002 greater Pearson correlation units).
The largest improvements were found for Days Open after imputation to HD

genotypes (up to 0.06 greater Pearson correlation units). R-Boost was more
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sensitive to marker density than G-BLUP. Both methods performed similarly
except for Fat Percentage, where R-Boost outperformed G-BLUP by up to
0.20 Pearson correlation units. The predictive ability of certain traits may be
improved either by imputing genotypes to HD or by utilizing a method that

takes into account the genetic architecture of the trait.

Finally, in chapter 6 a general discussion links the studies previously
covered with the implementation of genomic selection in the Spanish dairy
cattle. The first Spanish RP with above 1,600 progeny tested bulls was tested
as a proper source of genomic information in chapter 4 and was used for
comparing methods and scenarios in chapters 3, 4 and 5. First genomic
evaluation was carried out for those traits included in Chapter 4 of this thesis
and results were used for Al centers in September 2011. The Eurogenomics
population was included on November 2011. First complete genomic
evaluation for the 26 traits included in the Spanish index (ICO) was carried
out in February 2012 using Random Boosting as described in chapter 4. In
May 2012 Spanish genomic evaluation for protein yield was validated by
Interbull. Finally, on November 30™ 2012, first official genomic evaluations
were published on-line by CONAFE
(http://www.conafe.com/noticias/20121130a.htm).

-13 -
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Resum

La seleccio genomica esta canviant profundament el mercat del bovi de llet.
Actualment, és possible obtenir valoracions genétiques fiables d'animals
molt joves sense necessitat de disposar del fenotip propi o el de les seves
filles. Per tant, la resposta genética d'un programa genomic ben dissenyat

supera netament a la selecci6 tradicional.

Aquesta tesi es composa de sis capitols en els que s'estudia l'establiment de
les bases per a implementar un programa de seleccié genomica en el bovi de
llet espanyol. Amb aquesta finalitat, s'han realitzat estudis de simulacio i
valoracions genomiques amb dades reals de la primera poblacié de

referéncia nacional.

L'objectiu principal d'aquesta tesi €s contribuir a la implementacio de la
seleccid genomica en el bovi de llet espanyol. Els objectius especifics son:
(1) Estudiar alternatives de genotipat en poblacions reduides de bovi lleter.
(2) Desenvolupar i validar metodologia per a 1'avaluacié de grans quantitats
de genotips. (3) Estudiar l'efecte dels processos d'imputacié de genotips en

I'habilitat predictiva dels genotips resultants.

Les principals qiiestions relacionades amb la seleccid gendomica en bovi
lleter van ser discutides el capitol 1 incloent: aspectes estadistics i genétics
en que es basa la seleccid genomica, disseny de poblacions de referéncia
adequades, revisio de la metodologia desenvolupada per a l'avaluacio,
disseny i metodologia de programes d'imputacié i implementacié de la
seleccié genomica en bovi de llet a nivell de programa de seleccio, centre
d'inseminaci6 i granja comercial. La seleccid genomica esta revolucionant el
mercat del bovi de llet, ja que és possible aconseguir valors genétics molt
més precisos d'animals joves, en comparacio amb els obtinguts mitjangant
indexs de pedigri tradicionals. Aquesta millora esta modificant un dels

principis tradicionals del mercat de bovi de llet com era la preferéncia d'as
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de toros amb altes fiabilitats respecte animals amb valors genétics a priori

superiors.

En el capitol 2 es va realitzar un estudi de simulacié6 comparant estratégies
de genotipat selectiu en poblacions de femelles enfront de 1Mis de seleccid
tradicional o seleccié gendmica amb una poblacié de referéncia de mascles.
La poblacié espanyola estava formada per una mica més de 1,600 toros amb
prova de progeénie. Aquest mida no és, en principi, suficient per obtenir
prediccions genomiques d'alta fiabilitat. Per tant, calia avaluar diferents
alternatives per incrementar l'habilitat predictiva de les avaluacions. Les
estratégies que inclouen el genotipat com a poblacié de referéncia dels
animals en ambdoés extrems de la distribucié permetien millorar la precisio
de I'avaluacio. Els resultats usant 1,000 genotips van ser 0.50 per al caracter
de baixa heretabilitat i 0.63 per al d'heretabilitat mitjana quan la variable
dependent fou el fenotip ajustat. Quan varen usar-se valors genétics com a
variable dependent, les correlacions van ser 0.48 1 0.63, respectivament. Per
als mateixos caracters, una poblacié de 996 mascles va obtenir correlacions
de 0.48 1 0.55 en les prediccions posteriors. L'estudi conclou que 'estratégia
de genotipat que proporciona la major correlacid és la que inclou les
femelles de les dues cues de la distribucié de fenotips. D'altra banda es fa
evident que la mera inclusio de les femelles d'¢lit, que son les habitualment
genotipades, produeix resultats molt pobres en la prediccié de valors

genomics.

En el capitol 3, el Random Boosting és comparat amb altres meétodes
d'avaluaci6é gendmica utilitzant metodologia Bayessiana (Bayes-A 1 LASSO
Bayessia) i amb un G-BLUP usant la matriu genomica. La poblacio de
referéncia espanyola va ser utilitzada per comparar aquests metodes en
termes de precisio i biaix. Les prediccions genomiques van ser més precises
que l'index de pedigri tradicional a I'hora de predir els resultats de futurs test

de progénie. Els guanys obtinguts en precisio derivats de 1s de la seleccio
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genomica depenen del caracter avaluat i varien entre 0.04 i 0.42 unitats de
correlaciéo de Pearson. Els resultats promig entre caracters demostraren que
el LASSO Bayessia va obtenir majors correlacions superant al Random
Boosting, Bayes-A i BLUP genomic en 0.01, 0.03 i 0.03 unitats,
respectivament. Les prediccions obtingudes amb el LASSO també van
mostrar menys desviacions respecte la mitja, 0.02, 0.03 i 0.10 menys que
Bayes-A, R Boost i G-BLUP, respectivament. Les prediccions usant
Random Boosting van obtenir coeficients de regressid6 més propers a la
unitat que la resta de métodes i els errors mitjans quadratics van ser un 2%,
10% 1 12% inferiors als obtinguts a partir del B-LASSO, Bayes-A i G -
BLUP, respectivament. L'estudi conclou que el Random Boosting és una
metodologia aplicable en seleccidé genomica i1 competitiva en termes

d'habilitat predictiva.

En el capitol 4 I'algoritme de machine learning Random Boosting avaluat en
el capitol 3 és descrit i implementat per a seleccid genomica i adaptat a
I'avaluacié eficient de grans bases de dades. Després de la incorporacio al
consorci Eurogenomics, el programa genomic espanyol va passar a disposar
de més de 22,000 toros provats com a poblacidé de referéncia. Es va fer
necessaria doncs, l'implementacié d'un metode capag d'avaluar aquest gran
conjunt de dades en un temps raonable. El nou algoritme anomenat Random
Boosting realitza de forma seqiiencial una seleccio aleatoria d'SNPs a cada
iteracio sobre els quals s'aplica un predictor feble. L'algoritme va ser avaluat
sobre les dades reals de bovi de llet emprades en el capitol 3 i van estudiar-se
més en profunditat el comportament dels parametres de sintonitzacio.
Aquesta proposta de modificacié del Boosting permet obtenir prediccions
sense perdua de precisid ni increments de biaix emprant només un 1% del

temps de computacio original.

En el capitol 5 s'avalua l'efecte d'usar genotips de baixa densitat imputats

mitjangant el programari Beagle pel que fa a la seva posterior habilitat
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predictiva quan aquests son incorporats a la poblacié de referéncia. Amb
aquesta finalitat, es varen utilitzar dos meétodes d'avaluacié: Random
Boosting i un BLUP amb matriu gendmica. Animals dels que s'en coneixia
els SNPs inclosos en els xips GoldenGate Bovine 3K i BovineLD BeadChip
varen ser imputats fins a con¢ixer els SNP's inclosos en el BovineSNP50v2
BeadChip. Posteriorment, un segon procés d'imputacidé va permetre obtenir
els SNP's inclosos en el BovineHD BeadChip. Els genotipats a baixa densitat
després de ser imputats, van obtenir similar capacitat predictiva que els
originals en densitat 50K. Tanmateix, només €s va obtenir una petita millora
(en 0.002 unitats de Pearson) a l'imputar HD. El major increment es va
obtenir per a dies oberts on les correlacions en el grup de validacié varen
augmentar en 0.06 unitats de Pearson quan es van emprar els genotips
imputats a HD. En funcié de la densitat de genotipat, 'algoritme Random
Boosting mostra més diferéncies que el BLUP genomic. Ambdés metodes
varen obtenir resultats similars tret del cas d' percentatge de greix, on les
prediccions obtingudes amb el Random Boosting varen ser superiors a les
del G-BLUP en 0.20 unitats de correlacié de Pearson. L'estudi conclou que
la capacitat predictiva d'alguns caracters pot millorar imputant la poblaci6 de
referéncia a HD i usant métodes d'avaluacié que siguin capacos d'adaptar-se

a les diferents arquitectures genetiques possibles.

Finalment, en el capitol 6 es duu a terme una discussid general dels estudis
presentats en els capitols anteriors que s'enllacen amb la implementacio de la
seleccio genomica en el bovi lleter espanyol, desenvolupada paral-lelament a
aquesta tesi doctoral. La primera poblacié de referéncia, amb uns 1,600
toros, va ser avaluada en el capitol 4 i va ser usada per comparar els diferents
metodes 1 escenaris proposats en els capitols 3, 4 i 5. La primera avaluacio
genomica obtinguda per als caracters inclosos en el capitol 4 d'aquesta tesi
va estar disponible per als centres d'inseminaci6 inclosos en el programa al

mes de setembre del 2011. La poblacié d'Eurogenomics es va incorporar al
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novembre del mateix any, completant la primera avaluacié per als caracters
inclosos en l'index de seleccié ICO al febrer de 2012 emprant el Random
Boosting descrit en el capitol 3. El maig de 2012 les avaluacions del caracter
Proteina van ser validades per INTERBULL i finalment el 30 novembre
2012 les primeres avaluacions genomiques oficials van ser publicades on-
line per la federacio de ramaders CONAFE
(http://www.conafe.com/noticias/ 20121130a.htm).
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Resumen

La seleccion genomica estd cambiando profundamente el mercado del
vacuno de leche. En la actualidad, es posible obtener una alta precision en
las valoraciones genéticas de animales muy jovenes sin la necesidad del
fenotipo propio o el de sus hijas. Por tanto, la respuesta genética de un
programa gendémico bien disefiado supera netamente a la seleccion
tradicional. Esta mejora esta modificando uno de los principios tradicionales
del mercado de vacuno de leche como era la preferencia de uso de toros con
altas fiabilidades frente a otros animales con valores genéticos a priori

superiores.

Esta tesis contiene seis capitulos en los cuales se estudian de las bases para
la implementaciéon del programa de seleccion gendmica en el vacuno de
leche espatfiol. Para ello se realizaron estudios de simulacion y valoraciones

genomicas con datos reales de la primera poblacion nacional de referencia.

El objetivo principal de esta tesis es contribuir a la implementacion de la
seleccion gendmica en el vacuno de leche espafiol. Los objetivos especificos
son: (1) Estudiar alternativas de genotipado en poblaciones reducidas de
vacuno lechero. (2) Desarrollar y validar metodologia para la evaluacion de
grandes cantidades de genotipos. (3) Estudiar el efecto de los procesos de
imputacion de genotipos en la capacidad predictiva de los genotipos

resultantes.

Las principales cuestiones relacionadas con la seleccion gendomica en vacuno
lechero fueron discutidas en el capitulo 1 incluyendo: aspectos estadisticos y
genéticos en los que se basa la seleccion gendmica, disefio de poblaciones de
referencia, revision del estado del arte en cuanto a la metodologia
desarrollada para evaluacién genomica, disefio y métodos de los algoritmos
de imputacidon, e implementacién de la seleccion gendémica en vacuno de
leche a nivel de programa de seleccion, centro de inseminacion y de granja

comercial.
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En el capitulo 2 se realiz6 un estudio de simulacién comparando estrategias
de genotipado selectivo en poblaciones de hembras frente al uso de seleccion
tradicional o seleccion gendmica con una poblacion de referencia de machos.
La poblacion de referencia espafiola estaba formada en principio por algo
mas de 1,600 toros con prueba de progenie. Este tamafio no es, en principio,
suficiente para obtener predicciones genomicas de alta fiabilidad. Por tanto,
debian evaluarse diferentes alternativas para incrementar la habilidad
predictiva de las evaluaciones. Las estrategias que consisten en usar como
poblacion de referencia los animales en los extremos de la distribucion
fenotipica permitian mejorar la precision de la evaluacion. Los resultados
usando 1,000 genotipos fueron 0.50 para el caracter de baja heredabilidad y
0.63 para el de heredabilidad media cuando la variable dependiente fue el
fenotipo ajustado. Cuando se usaron valores genéticos como variable
dependiente las correlaciones fueron 0.48 y 0.63 respectivamente. Para los
mismos caracteres, una poblacion de 996 machos obtuvo correlaciones de
0.48 y 0.55 en las predicciones posteriores. El estudio concluye que la
estrategia de genotipado que proporciona la mayor correlacion es la que
incluye las hembras de ambas colas de la distribucion de fenotipos. Por otro
lado se pone de manifiesto que la mera inclusion de las hembras élite que
son las habitualmente genotipadas en las poblaciones reales produce

resultados no satisfactorios en la prediccion de valores gendmicos.

En el capitulo 3, el Random Boosting (R-Boost) es comparado con otros
métodos de evaluacion gendomica como Bayes-A, LASSO Bayesiano y G-
BLUP. La poblacion de referencia espafiola y caracteres incluidos en las
evaluaciones genéticas tradicionales de vacuno lechero fueron usados para
comparar estos métodos en términos de precision y sesgo. Las predicciones
genomicas fueron mas precisas que el indice de pedigri tradicional a la hora
de predecir los resultados de futuros test de progenie como era de esperar.

Las ganancias en precision debidas al empleo de la seleccion gendmica
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dependen del caracter evaluado y variaron entre 0.04 (Profundidad de ubre)
y 0.42 (Porcentaje de grasa) unidades de correlacion de Pearson. Los
resultados promediados entre caracteres mostraron que el LASSO Bayesiano
obtuvo mayores correlaciones superando al R-Boost, Bayes-A y G-BLUP en
0.01, 0.03 y 0.03 unidades respectivamente. Las predicciones obtenidas con
el LASSO Bayesiano también mostraron menos desviaciones en la media,
0.02, 0.03 y 0.10 menos que Bayes-A, R-Boost y G-BLUP, respectivamente.
Las predicciones usando R-Boost obtuvieron coeficientes de regresion mas
proximos a la unidad que el resto de métodos y los errores medios
cuadraticos fueron un 2%, 10% y 12% inferiores a los obtenidos a partir del
B-LASSO, Bayes-A y G-BLUP, respectivamente. El estudio concluye que
R-Boost es una metodologia aplicable a seleccion gendémica y competitiva

en términos de capacidad predictiva.

En el capitulo 4, el algoritmo de machine learning R-Boost evaluado en el
capitulo 3 es descrito e implementado para seleccion gendomica adaptado a la
evaluacion de grandes bases de datos de una forma eficiente. Tras la
incorporacion en el consorcio Eurogenomics, el programa gendémico espafiol
pasé a disponer de mas de 22,000 toros probados como poblacion de
referencia, por tanto era necesario implementar un método capaz de evaluar
éste gran conjunto de datos en un tiempo razonable. El nuevo algoritmo
denominado R-Boost realiza de forma secuencial un muestreo aleatorio de
SNPs en cada iteracion sobre los cuales se aplica un predictor débil. El
algoritmo fue evaluado sobre datos reales de vacuno de leche empleados en
el capitulo 3 estudiando mas en profundidad el comportamiento de los
parametros de sintonizacion. Esta propuesta de modificacion del Boosting
puede obtener predicciones sin perdida de precision o incrementos de sesgo

empleando tan solo un 1% del tiempo de computacion original.

En el capitulo 5 se evalua el efecto de usar genotipos de baja densidad

imputados con el software Beagle en cuanto a su posterior habilidad
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predictiva cuando son incorporados a la poblacion de referencia. Para ello se
emplearon dos métodos de evaluacion R-Boost y un BLUP con matriz
gendmica. Animales de los que se conocian los SNPs incluidos en los chips
GoldenGate Bovine 3K y BovineLD BeadChip, fueron imputados hasta
conocer los SNPs incluidos en el BovineSNP50v2 BeadChip.
Posteriormente, un segundo proceso de imputaciéon obtuvo los SNPs
incluidos en el BovineHD BeadChip. Tras imputatar desde dos genotipados
a baja densidad, se obtuvo similar capacidad predictiva a la obtenida
empleando los originales en densidad 50K. Sin embargo, s6lo se obtuvo una
pequefia mejora (0.002 unidades de Pearson) al imputar a HD. El mayor
incremento se obtuvo para el cardcter dias abiertos donde las correlaciones
en el grupo de validaciéon aumentaron en 0.06 unidades de Pearson las
correlaciones en el grupo de validaciéon cuando se emplearon los genotipos
imputados a HD. En funcion de la densidad de genotipado, el algoritmo R-
Boost mostré6 mayores diferencias que el G-BLUP. Ambos métodos
obtuvieron resultados similares salvo en el caso de porcentaje de grasa,
donde las predicciones obtenidas con el R-Boost fueron superiores a las del
G-BLUP en 0.20 unidades de correlacion de Pearson. El estudio concluye
que la capacidad predictiva para algunos caracteres puede mejorar
imputando la poblacion de referencia a HD asi como empleando métodos de
evaluacion capaces de adaptarse a las distintas arquitecturas genéticas

posibles.

Finalmente en el capitulo 6 se desarrolla una discusion general de los
estudios presentados en los capitulos anteriores y se enlazan con la
implementacion de la seleccion gendmica en el vacuno lechero espaiol, que
se ha desarrollado en paralelo a esta tesis doctoral. La primera poblacion de
referencia con unos 1.600 toros fue evaluada en el capitulo 4 y fue usada
para comparar los distintos métodos y escenarios propuestos en los capitulos

3, 4 y 5. La primera evaluacion genoémica obtenida para los caracteres
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incluidos en el capitulo 4 de esta tesis estuvo disponible para los centros de
inseminacion incluidos en el programa en septiembre de 2011. La poblacion
de Eurogenomics se incorpor6 en Noviembre de dicho afio, completandose
la primera evaluacion para los caracteres incluidos en el indice de seleccion
ICO en Febrero de 2012 empleando el R-Boost descrito en el capitulo 3. En
mayo de 2012 las evaluaciones del caracter proteina fueron validadas por
Interbull y finalmente el 30 de Noviembre del 2012 las primeras
evaluaciones gendmicas oficiales fueron publicadas on-line por la federacion

de ganaderos CONAFE (http://www.conafe.com/noticias/20121130a.htm).
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Infinitesimal model and genomic selection

Animal breeding aims to improve economic productivity of future
generations of domestic species through selection under a changing cost and
income scenario. Most of the traits of economic interest in livestock have a
complex and quantitative expression i.e. are influenced by a large number of
genes and affected by environmental factors. Statistical analysis of
phenotypes and pedigree information allows estimating the genetic merit
(breeding values) of the selection candidates based on Fisher’s infinitesimal
model (Fisher, 1919). The infinitesimal model assumes that quantitative
traits are determined by an infinite number of loci with very small effects on
these characters. It is assumed that these quantitative trait loci (QTL) are
homogeneously distributed throughout the genome. The population mean of
quantitative traits is modified choosing the best genotypes in the population
using the predicted breeding values obtained with the Best Linear Unbiased
Predictor (BLUP) methodology (Henderson, 1975). The genetic
improvement obtained with this traditional quantitative method is due to the

average probability of sharing certain variants of genes between relatives.

Nowadays, thanks to the advances in the molecular techniques, a large
number of genetic markers are known and can be individually genotyped.
Different authors have proposed strategies to use and integrate these new
sources of information (Fernando and Grossman, 1989; Lande and
Thompson, 1990). Marker-assisted selection provided options for extra
gains by increasing selection accuracy when a sufficiently large number of

markers are used (Villanueva et al., 2005).

The sequencing of the human genome, completed in 2003, followed by those
of several animal species as cattle (Elsik et al., 2009), have paved the way to
a new tool that uses genomic information of each animal. These modern

sequencing techniques allow genotyping thousands of sources of variation

-30 -



General Introduction

throughout the genome. Some of them may relate to the productive
performance of the animals, their morphology or resistance to diseases.
Some markers represent differences in chemical bases (Adenine, Cytosine,
Guanine and Thymine) in certain positions of the DNA sequence. Those
markers are known as SNP when differ in a single base. It is expected that
some of those variations will be close to QTLs of interest. Therefore, SNPs
are used as markers under the assumption that they will be inherited jointly
to QTLs due to the existing linkage disequilibrium (LDQ) in the genome.
Breeding values can be estimated through marker effects estimation
considering all QTLs simultaneously. Those marker effects are assumed to
be consistent across families. Selection based on this genomic predictions
was named Genomic Selection (GS) (Haley and Visscher, 1998) and is

becoming a new paradigm for genetics.
The breeder equation under GS

Genetic response

The main advantage that genomics provides is the increment of the selection
accuracy at an early age of the animal compared to traditional pedigree index
(PI) when the own phenotype and/or pedigree are not available (Goddard,
2009). This development is of great importance because it changes the
reliability of the information available at the key moment when selection
decisions have to be taken, such as: bulls to be progeny tested or marketed,

replacement of heifers, cow culling and mating.

Given the annuar genetic response equation:

0G =%
L
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where O G is the expected annual genetic gain, i is the selection intensity
applied, p is the accuracy of the evaluation, o, is the additive genetic

standard deviation, and L the generation interval considered.

The use of genomics has some effect on all terms of the equation:

Accuracy and generation interval

Genomic selection provides a greater p in comparison with the PI and a
reduction of L as a higher p can be obtained at earlier ages of individuals
(Dekkers, 2010). This improvement is of special interest for those programs
based on the selection of highly reliable individuals, as it is the case in dairy

cattle.

The accuracy of GS depends, among other factors, on the LDQ between
SNPs (Calus et al., 2008). LDQ is defined as the non-random association
between the alleles at two different genome loci. LDQ can be caused by
migration, mutation, selection or genetic drift in small populations, or any
other event that may affect the genetic structure of the population. Sargolzaei
et al. (2008) found averaged values for LDQ of 0.31 calculated as r* (Hill
and Robertson, 1968). Afterwards, Banos and Coffey, (2010) reported levels
around 0.30 for r* in a Holstein population, and concluded that this is the

minimum level required for reliable prediction of genomic breeding values.

High density arrays may provide enough LDQ between genome segments to
trace all QTL affecting the traits of interest (Hayes, 2007). However, LDQ is
decreasing if a recombination occurs in the meiosis previous to the
development of the gametes of each new generation (Habier et al., 2009). To
maintain the reliability of genomic predictions, new genotyped and
phenotyped individuals should be included in the RP. The estimation of the
chromosomal segment effects should be re-evaluated at least every three

generations according to Hayes (2007).
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The first results obtained with simulations were overly optimistic, showing
accuracy of predictions higher than 0.80 (Meuwissen et al., 2001). A
revolution in testing programs was proposed with the optimistic expectation
that progeny testing cost could be reduced by 92% (Schaeffer, 2006).
Besides this overoptimistic background, other factors should be taken into
account for the field implementation of GS. An initial large investment in
genotyping would be necessary. It is essential to maintain commercial farms
involved in the data recording, which is a requirement for a correct
estimation of SNPs effects. It must be pointed out also that many dairy
farmers tend to use semen from proven bulls with high reliability for mating

designs, for compensating weak points and deficiencies of their cows.

Selection intensity

Selection intensity could be incremented in the sire-sire or dam-sire paths
due to more reliable information about the individuals or discriminating

between full sibs.

Genetic variability

Finally, GS can reduce the emphasis on the family information in
comparison with traditional breeding, which is related to a lower increase of
inbreeding (Daetwyler et al., 2007). Inbreeding increments are related to a
reduction in genetic variability and therefore ¢°,, which may negatively
affect the genetic gain. However, results are contradictory (Pedersen et al.,
2010), and there is a risk of dangerously speeding up inbreeding by sampling
only the apparently best families and promoting the most profitable matings

in the short term (Diirr and Philipsson, 2012).

The state of the art genomic evaluations have not achieved the initially
expected reliabilities (Pryce and Daetwyler, 2012). Genomic information

improved the accuracies of genetic values equivalent to 11 daughters in a
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traditional progeny test (VanRaden et al., 2009b). Under these assumptions,
dairy cattle genomics is focused on pre-selection of candidates to be tested
or marketed based on their genomic values (Lillehammer et al., 2010).
Nevertheless, some young bulls evaluated based on their genomic
information have been marketed due to outstanding genomic values, and

some aggressive breeding strategies based on genomics have been proposed.

Reference population and genotyping strategies

The dairy cattle breeding market is highly competitive. Breeding programs
not implementing these new tools may be disadvantaged compared to other
competitors in a few years. The leading countries in dairy cattle sector have
developed their genomic programs with different alternatives regarding

methods and genotyping strategies.

The first step in the implementation of GS is to create a RP of genotyped
animals. It is not straightforward to determine what animals should be
genotyped first. Most countries have genotyped proven bulls for that
purpose. Other types of genotyped animals are not yet or less useful for the
RP, for instance: young bulls waiting for progeny proof, elite females (bull
dams or candidates), top ranking heifers, and production cows from the
entire population (see cases of countries such as Denmark, Canada, Finland,

Sweden, Unites States, Ireland, France or Holland).

What is a reference population?

The fundamental step in genomic selection is the collection of phenotypes
(own or from progeny) and DNA samples from those genotyped animals.
The “RP” is used to train a statistical model that estimates the effects of each
SNP or genomic combinations thereof, on phenotypes. These estimates
allow predict genomic breeding values for new individuals with the only

source of information of their DNA (Dekkers, 2010).
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Features of the reference population

The characteristics of the RP, such as the population size or the type of
animals, determine the accuracy of predicted genetic values of young
animals (Hayes et al., 2009a; VanRaden et al., 2009b). Other aspects
determining the predictive accuracy are: the reliability of the phenotypic
information, the genetic relatedness of the population, both in the training
and validation sets, or the genotyping density. The establishment of an
appropriate RP is one of the key aspects in a genomic program. The strategy
to include animals in the RP depends on the goal (Pérez-Cabal et al., 2012).
For dairy cattle RPs, Saatchi et al, (2010) recommended to use reliable

(>90%) progeny tested sires from recent generations rather than older bulls.

Size of the reference population

The required size of the RP is inversely proportional to the heritability of the
trait and directly proportional to the effective population size (Goddard,
2009). National populations could be enough for some traits with high h?,
but not for traits with low h?. One of the challenges in small populations, and
especially for low heritability traits is to increase the predictive accuracy

obtained with genomic evaluations (VanRaden et al., 2009a).

Different international collaboration consortia have emerged to increase the
accuracy of genome-enhanced predictions for a successful implementation
of genomic selection. The first association appeared between Canada and the
United States to share genotypes and technical knowledge in 2008 with an
initial population of around 17,000 genotypes (VanRaden et al., 2009a;
Wiggans et al., 2011, 2008). Recently, Great Britain and Italy joined the
consortium. The current size of the whole population is above 50,000
genotypes including cows. Other European countries created the
Eurogenomics consortium in 2009 (Holland, Germany, France, Finland,

Sweden, Denmark). It incorporated Spain in 2011, and Poland in 2012.
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Around 22,000 50K genotypes and more than 1,000 high density (HD)
genotypes are currently shared between these countries. Other countries are
currently working in cooperation programs (Cromie et al., 2012; de Roos et
al., 2009; Lund et al., 2011). This implies sharing both genotypes and
phenotypic records while maintaining the estimation procedures separately
at the national centers or research partners in the case of the two main

consortiums.

The increment in reliability due to the RP size was estimated to range
between 8% and 11% above the reliability obtained with the national RP
using 15,996 sires from the Eurogenomics consortium (Lund et al., 2011).
Larger RP will be necessary for multi-breed evaluations, as well as higher
density arrays, to compensate for the greater genetic diversity. However, this
should be confirmed in real population and strategies and methods should be

developed for these particular cases.

Predictive ability of genomics depends mainly on the size of the RP. To raise
the number of animals used as reference has been the main objective of
many programs. As progeny tested bulls are the most accurate source of
information, to share their genomic information is the most successful
strategy to enlarge the RP. However, for small populations without many
reliable bulls or for those traits not routinely recorded, different alternatives

should be considered.

Reference populations closed or dynamics

As mentioned above, the LDQ decays with the passing of generations. We
should consider changes in allele frequencies, estimates of spurious effects
and the possibility of emergence of new mutations in the population. The
reliability of genomic evaluations is enhanced when the parents of the

animals to be evaluated are included in the RP (Weigel et al., 2009).
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The RP should be dynamic and remain open to the entry of new animals,
thus it is important to maintain or create a good data recording scheme.
Collaboration contracts with commercial farms have been suggested to
optimize the volume and quality of this information (Koénig, 2010).
However, progeny testing schemes will continue to be of great importance in

dairy cattle to reach high reliability, at least for the next years.

Genotyping Strategies

Most countries only have sires genotyped as RP (Loberg and Diirr, 2009).
Bulls are a good and easy representation of the genetic structure of the
population, and achieve high reliabilities due to the large amount of
information generated by their daughters. They are important for the Al
centers and spread most of the genetic improvement. Many programs have a
limited number of highly reliable sires that could limit good genomic
predictions (VanRaden et al., 2009a). The efficiency of the program could
improve considering alternative selective genotyping. The inclusion of the
most informative females should be evaluated for this purpose (Sen et al.,

2009; Spangler et al., 2008).

Currently, the best females (bull dams candidates) have been genotyped in
some countries (Loberg and Diirr, 2009), and some genomic evaluation
systems (e.g., USA or Australia) now include cows in their training
population. (Pryce et al., 2012; Wiggans et al., 2011) However, preferential
treatment of particular cows in the genomic predictions via their

performance records has to be somehow corrected.

Nieuwhof et al, (2012) showed that the inclusion of cows in a RP produced
slight differences regarding bulls in terms of correlations with daughter
performance. The main advantage of including sires and dams in the
reference set was an improvement in regression coefficients for many traits,

compared with both the PI and the genomic breeding values (DGV) from a
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population composed only by sires. It was expected that bias might increase
with the inclusion of cows in the reference set. Including cows with good
quality records in the reference set resulted in better selection decisions for

some traits.

In a few years, several populations will have more cows than bulls
genotyped. It can be hypothesized that the genotypes of large female
populations are an alternative to improve the accuracy of the genomic
evaluations. Females represent the larger portion within the Holstein
population and most of the traits of economic interest are measured in them.
The association between phenotype and genotype of the same animal should
be greater than the association between a genotype and the averaged
phenotypes of their progeny. A massive genotyping of females would allow
capturing more genomic associations between markers and phenotypes. This
genotyping could be combined with other strategies such as the genotyping
at different densities and imputation of missing SNPs. Those designs allows
to increase the size of the RP at a low cost (Habier et al., 2009; Weigel et al.,
2009, 2010b).

Methods applied to genomic prediction

The knowledge of the genome of an animal brings a new and
complementary source of information to that previously available for
selection. In such a situation, information is obtained for a large number of
markers. However, only few thousand of individuals are genotyped leading
to the curse of dimensionality problem also known as the “large p, small n”
problem. This scenario generates an over-parameterization in traditional
methods. Therefore it is necessary to develop, adapt and implement new

methods in the genome-enhanced evaluations.

Different approaches are currently used for estimating genomic values, and it

is important to assess the performance of diverse methodologies and identify
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the methods that provide the greatest predictive ability in a given population.
Genomic prediction methods can be categorized as: 1) methods that regress
phenotypic records on SNP markers directly, and 2) methods that compute
genomic values as a function of the genomic relationship using a

(co)variance structure between subjects (De los Campos et al., 2009).

Methods based on marker regression estimate genomic values as a linear

regression of phenotypes or pseudo-phenotypes on marker genotype codes as
y=1lu+Xf+e

Where y is a vector of dependent variables, 1 is a vector of ones, p is the
population mean or intercept, X is a n x p matrix of codes (e.g., -1, 0, 1 for
aa, aA, and AA genotypes, respectively) of n samples and p markers, f is a
vector of allelic substitution effects for each marker, and e is a vector of

residuals.

As said previously, GS is carried out in # << p scenarios. Methods based on
marker regression need to introduce some shrinkage on the estimation of
marker effects. On the contrary, methods based on genomic matrix do not
suffer from the large p small n problems, as the amount of unknown effects
is generally not larger than in the traditional BLUP models (Gonzélez-Recio

et al., 2008).

Below is an overview on the methods that have been proposed for genomic-

enhanced evaluations.
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Least squares

This approach does not make assumptions about the distribution of the
markers as their effects are treated as fixed. It simply deals with more
parameters to estimate than available data. Therefore, SNPs pre-selection
through ordinary least squares regressions is commonly applied prior to the
analyses. Those SNPs with larger effect are selected, assuming that the
others do not have any effect on the considered trait (Meuwissen et al.,
2001). This methodology applied to genomic selection showed
unsatisfactory results (Goddard and Hayes, 2007).

BLUP (Ridge Regression)

Here, a normal prior N (O,I(fé) is assigned to the marker effects (f). It must

be noted this is not the traditional BLUP described by Henderson (1975).
Usually, it is considered that the shrinkage on markers effects is
homogeneous; however, this shrinkage should be allelic frequency
dependant with less shrinkage on markers that have intermediate allelic
frequency (Gianola, personal communication). Regarding prediction ability,
these methods do not fit well for those cases where genes with large effect
are involved, such as in the case of DGATI1 in fat content in milk

(Meuwissen et al., 2001).

Bayesian Alphabet

Bayes A

This model proposes Bayesian regressions on the genomic markers. It was

originally proposed by Meuwissen et al. (2001). Bayes A assumes a normal

prior distribution on the SNPs effects, with zero mean and variance Gf

associated to each marker. This variance is assumed to be distributed as a

scaled inversed Chi-squared with 4.012 degrees of freedom and scale
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parameter 0.002 in (Meuwissen et al., 2001) . The choice of these
hyperparameters fitted the simulations used by the authors, but they have
been extended to many cases where these values have not been justified.
Furthermore, these hyperparameters do not allow Bayesian learning, as
evidenced in Gianola et al. (2009). Contrary to what argued initially, this
method does not assume different variances for each SNPs, because the prior
distribution for the variance of the effects is the same for all markers. The
shrinkage on the marker coefficient estimate depends on the estimated
marker effect and the allelic frequency of such marker (Gianola, personal
communication). Bayes A provides accurate predictions, although it seldom

outperforms the methods described below.

Bayes B

This statistical approach was also described in the study of Meuwissen et al.
(2001). Bayes B is likely the most accepted model, despite the flaws on its

formulation. Bayes B assumes a normal prior distribution on the SNPs

effects with zero mean and variance 0. Then, a mixture of distributions is

assumed on this variance being equal to zero with probability m and
distributed as in Bayes A with probability 1-w. This formulation is ill-posed
from a Bayesian point of view, as assuming a zero variance implies absence
of uncertainty about the marker effect, and therefore the inference lacks
Bayesian sense. Furthermore, the election of m is arbitrary with no
justification and the choice of the hyperparameters in the inversed chi-
squared distribution suffers the same drawbacks as in Bayes A. However,
Bayes B is one of the most used methods and provides highly accurate
predictions, especially for those traits regulated by large effect genes as fat
percentage. In the original article of Meuwissen et al. (2001), averaged

accuracies (5 replicates) between predicted and simulated values resulted
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0.318 +0.018 for least squares, 0.732 +0.030 for BLUP, 0.798 for Bayes A
(1 replicate) and 0.848 +0.012 for Bayes B.

Bayes C

Bayes C was proposed to amend some of the defects of Bayes B, as the
estimation of the probability m or the distribution of mixtures, which in
Bayes C is applied on the SNPs effects instead of the variances. In a
comparison using simulated data, Bayesian BLUP, Bayes A, Bayes B and
Bayes C achieved similar predictive ability and over 0.85 in terms of

Pearson correlation (Verbyla et al., 2010).

Bayes SSVS

Verbyla et al. (2009) proposed Bayes-SSVS, adding stochastic search
variable selection for the selection of SNP included in the model of
prediction and those set at zero variance. The main advantage of the method
is the reduction in computational time when compared with the original

Bayes B algorithm.

Bayes Cr & Dr

Habier et al. (2011), described the Bayes Cz and Bayes Dz methods. To
address the drawback of BayesA and BayesB regarding the impact of prior
hyper-parameters exposed by Gianola et al. (2009) and the prior probability
on 7. The former applies a single variance common to all SNPs instead of
locus specific variance for those 1-z non-zero markers. The second proposes
a prior on the scale parameter of the marker effect variance, which follows
an inverse chi-square prior. In addition, the proportion 7 of SNP is also
considered unknown and thereby estimated from the data. However,
accuracies of these alternative Bayesian methods were similar to original
methods. None of them as preferred when they were compared in terms of

prediction accuracy. Bayes Cz was competitive in terms of computational
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time as its Gibbs algorithm is faster than the Metropolis-Hastings algorithm
of the other methods.

Bayesian LASSO

The Bayesian counterpart of the LASSO method (Park and Casella, 2008)
has been proposed for its implementation in genomic selection. This
methodology considers a Laplace (double exponential, DE) prior distribution
on the markers effects. This method performs larger shrinkage on the
marker coefficients estimates towards zero than methods such as BLUP or
Bayes A. A large number of markers are estimated with a very small effect,
almost null, while a small proportion of marker effects are allowed to have
large effects. This produces an effect similar to the pre-selection of

covariates (De Los Campos et al., 2010).

The Bayesian LASSO depends on a shrinkage parameter over the
distribution of the marker effects. Several alternatives have been proposed
for the estimation of this parameter. Bayesian estimation is perhaps preferred
for the philosophy of the method. Note that, SNP effect posterior distribution
was conditional on the residual variances in the original version. Legarra et
al. (2010) proposed a modification of the method considering two different
variances, one for the conditional distribution of SNPs effects, and another

for the residuals.

Bayesian LASSO has been widely applied in genomic evaluations. Usai et
al. (2009) reported better results using a modified LASSO than G-BLUP and
Bayes-A. They concluded that it provides accurate predictions, especially for
low density genotyping. Cleveland et al. (2010) reported similar results
when comparing Bayesian LASSO and two variants of Bayes A, but they
found better predictions using Bayesian LASSO for those traits regulated by

a larger number of genes with a small effect.
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Bayes R

Bayes R has been recently proposed. It uses a mixture of four zero-mean
normal distributions as prior distribution on the SNP effects. The first
distribution assumes zero variance zero effect, and the last one, with
approximately 1% of the total genetic variance. The prior of the proportions
of SNP in each distribution was the Dirichlet distribution. This method also
includes a polygenic effect estimated using the average relationship matrix.
As in Bayes B, this method assumes no uncertainty for those SNP assigned
in the zero mean zero variance class, and the total genetic variance is

assumed known without uncertainty.

Elastic Net and SNP pre-selection

The elastic net model, as implemented for genomic selection by Croiseau et
al. (2011), corresponds to a combination of the ridge regression BLUP and
LASSO, with an additional parameter a, taking a value in [0, 1], to weight
the RR and LASSO penalties. With oa=1, a LASSO model is defined,
whereas with a =0 a full ridge regression model is chosen. The objective of
this method is to provide a more flexible tool for dealing with n << p
scenarios. It has resulted in encouraging results especially for small
populations (Croiseau et al., 2011; Sanchez et al. 2011). The authors also
include SNP pre-selection that can be implemented before carrying out a
genomic evaluation. Markers included in evaluation were selected following
QTL detection procedures using a combined linkage disequilibrium and
linkage analysis (LDLA) (Druet et al., 2008; Meuwissen and Goddard,
2001). From this LDLA, a value of the likelihood ratio test (LRT) was
obtained for each haplotype. Then, the 50 SNPs around each detected LRT
peak (£25) were included in a pre-selected set of SNPs used for genomic
evaluation. This marker pre-selection did not clearly improve original
methods in terms of prediction accuracy but reduced the computation time of

marker regression algorithms.
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G-BLUP

This method is similar to the traditional BLUP evaluations described by
Henderson (1975). However, it uses a genomic relationship matrix built
from molecular information instead of traditional pedigree relationship
matrix. Those individuals sharing identical by state genotype for a larger
number of markers are expected to be genetically more similar and will have

larger values in the corresponding cells of the matrix.

This method has gained acceptance by the scientific community and is used
in the official evaluations of several countries such as U.S.A or Canada. First
evaluations performed with real data showed reliabilities for the combined
trait Net Merit of 63% compared to 32% resulting from pedigree index
(VanRaden, 2008). Luan et al. (2009) found higher accuracies using G-
BLUP than using Bayes B. However, Mrode et al. (2010) in a comparison
between two G-BLUP, two Bayes-A and two Bayes-B reported similar
results for the methods considered with some variations depending on the

target trait.

Single-Step Genomic Selection

Most countries combine genomic-enhanced breeding values obtained from
genomic models with traditional proofs (Hayes et al., 2009b; VanRaden et
al., 2009b). However, there is not consensus on what is the best approach for
blending these predictions that are obtained from different sources of
information, different animals, and different model assumptions. To address
this problem, Misztal et al. (2009) proposed an evaluation where pedigree
relationship is reinforced with contributions from the genomic relationship
matrix. This procedure is expected to improve the evaluation of non
genotyped animals. This method was tested using the combined
morphological trait Final Score of U.S.A Holstein records by Aguilar et al.
(2010). Coefficient of determination resulted in 24 % for PI, 40% for a G-
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BLUP combined with PI in a multiple step procedures and ranged from 37%

to 41% for six different single-step approaches.

These methodologies avoid the ad-hoc combination of genomic and
traditional predictions, however it is necessary to include a weighting
parameter for the genomic and pedigree relationship matrices. Parameter
estimates may be biased if the genomic relationship coefficients are in a
different scale from pedigree-based coefficients. Forni et al. (2011)
suggested re-scaling the genomic relationship matrix using the observed
allele frequencies to obtain average diagonal elements of 1. Vitezica et al.
(2011) concluded that Single Step was less biased than a multiple step
approach. Recent results of Nordic Red cattle (Su et al., 2012b) showed that
this method outperformed PI accuracies for the whole data set of animals
included in the evaluation (genotyped and non genotyped). Slightly greater
accuracy was also reported compared with DGV using G-BLUP and blended
genomic values (GEBV) (2.2 % and 1.3 % respectively).

The “two-step” approach is undertaken in most dairy cattle populations,
although research on a single-step approach for genomic predictions is at an
advanced stage of research in some countries as New Zealand (Harris et al.,

2012).

Machine Learning algorithms

These methodologies have emerged recently, and aim at optimizing
predictive ability in a set of data without assuming a specific pattern of
inheritance Many algorithms have been developed in the machine learning

field (Long et al., 2007). Some of them are discussed below.

Reproducing Kernel Hilbert Spaces Regression (RKHS)

Gianola et al. (2006) proposed semi-parametric method for the genomic

evaluations as an alternative to SNPs regressions. These methods are more
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attractive because of multiple and complex interactions that may exist in the
biological and metabolic systems. The results obtained so far show that these
methods are not worse than the Bayesian regression and in many cases over-
performed them in predictive ability (Gonzalez-Recio et al.,, 2009;
Konstantinov and Hayes, 2010; Long et al., 2010).

For example, in a study about feed conversion rate in broilers, correlations
between observed and predicted phenotypes with similar to those obtained
with Bayes A (0.27), while correlation with e PI was 0.11 only (Gonzalez-
Recio et al., 2009). However, the correlation increases if a pre-selection of
SNPs was carried out with RKHS implemented subsequently. Several
authors gave statistical details of the theory underlying these methods
(Gianola and de los Campos, 2008; Gianola and Kaam, 2008; Wahba, 1999).
The main disadvantage of these methods is the necessity of tuning some
internal parameters, and the fact that interpretation of results does not

respond to a traditional genetic model.

Random Forest

The Random Forest (RF) algorithm builds classification or regression trees
from genotypes and phenotypes of individuals using randomization of the
sample. It considers all markers but also their possible interactions,
environmental factors and even interactions between them. Those methods
present a predictive ability that is equal or better than that of other
parametric methods (Gonzéalez-Recio and Forni, 2010). The RF algorithm
offers the possibility of capturing effects of a large number of interactions
gene-gene and gene-environment (Sun, 2010). This should be a major
advantage in the study of complex diseases although it has been seldom used

in genome-assisted evaluations.
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Support Vector Machine

Support Vector Machine (SVP) are supervised learning models with
associated learning algorithms that analyze data and recognize patterns used
for classification and regression analysis. These SVPs perform robust
regressions for quantitative responses. This method exploits the relationships
between observations through arraying predictors in an observation space
using a set of inner products. It can be considered as a specific learning
algorithm within the general reproducing kernel Hilbert spaces (RKHS)
regression. In a study by Moser et al. (2009), SVR gave the highest accuracy

when compared with RR-BLUP or Bayesian regression.

Neural Networks

These machine learning algorithms can accommodate complex genotype-
phenotype relationships including additivity but also dominant or epistatic
effects. Bayesian Radial Basis functions models, as described by Long et al.
(2010), outperformed Bayes-A when different epistasis and dominant
scenarios were simulated. Similarly, predictive ability was improved using
Neural Networks on dairy cows and wheat genomic data compared to
models that used using only pedigree. Gianola et al. (2011) concluded that
Neural Networks may be useful for predicting complex traits using high-
dimensional genomic information, where the number of unknowns exceeds
sample size. Neural Networks can capture non-linear dependencies in an

adaptive manner. This may be useful for prediction of phenotypes.

Boosting

This algorithm has shown competitive behavior in prediction studies in
multiple domains. In a multi-species study (dairy cattle and broilers),
Pearson correlations between predicted and observed responses for
productive life were 0.65, 0.53, 0.66, y 0.63 using two Boosting approaches,
Bayesian-LASSO and Bayes-A, respectively. In the broiler example,
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outcomes for those methods were 0.33, 0.37, 0.26 and 0.27 respectively,
showing a marked advantage of Boosting over the Bayesian models. Based
on these results, machine learning algorithms are a suitable alternative to
other methods used for genomic evaluations but at the expense of a lower
interpretability of results (Gonzalez-Recio et al., 2010). In a comparison
between the three methods, Ogutu et al. (2011) concluded that Pearson
correlation was greater for boosting, intermediate for SVMs and lowest for

RF but with little difference among the three methods.

It must be noted that results obtained with different methods depend on
many factors including genetic architecture of the trait, the RP size, the
dependent variable used or marker density, among others (Calus, 2010). It is
necessary to have more information about the real performance of the
methods in order to decide which is the most suitable for each case. It seems

inappropriate to give a single recommendation.

Several methods have been proposed, but no one shows clear advantages
over the others in terms of prediction ability and almost every country is
following its own developments. Some convergence should be expected in

the future, if any methodology out-performs the others.
Implementation of genomic selection in dairy cattle

Dependent variable

Accurate phenotyping is still the main pre-requisite for a successful breeding
program, and is even more important within a genomic context. The
reduction of testing schemes and phenotyping data collection could squander

any potential advantage of GS.

It is also possible to use Predictive Transmitting Ability (PTA) as dependent
variable in the genomic evaluations. PTA is the predicted genetic merit that

an animal transmits to its offspring for a given trait, including information
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coming from its relatives. However it is convenient to use daughter yield
deviation (DYD) as dependent variable to avoid that information from
relatives influence the genomic breeding value of a given animal. The DYD
for sires is the average of the phenotypes of the offspring adjusted by the
genetic value of the mating and the environmental effects. In the extreme
case, phenotypes can be used as response variable, but this has not yet been
studied with the exception of Single-Step approaches, and further research is
necessary on this context. There is not an agreement about the most suitable
response variable and depends on the problem to be solved or the data
available. For instance, in dairy cattle each country uses different measures:
DYD, de-regressed national and international EBV or phenotypic records as
the case of Israel (Loberg and Diirr, 2009). Currently, most of the genomic
evaluations include bulls from other countries in the RP. Genotypes of
foreign bulls are only useful if they have available phenotypic information.
In these cases, the only source of information is the sire’s deregressed
multiple across country evaluations (MACE) EBV expressed on each

national scale (Liu, 2011).

The Dependent variable used for most genomic evaluations of dairy cattle is
still either a traditional stimated breeding value or another kind of pseudo-
phenotype. To achieve the maximum benefits of GS, real phenotypes should
be the desired dependent variable in the future. Prediction of future

phenotypes should be the goal of GS.

Chips

Chips that contain SNPs specifically chosen for their large effects, gave high
accuracy of genomic breeding values (De los Campos et al., 2009).
However, designed chips based on evenly spaced SNPs along the genome,
produce more reliable predictions (Kong et al., 2008), and they may be used

for multiple trait evaluations. If the cost of genotyping limits SNP panels to
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750 loci or fewer, assays based on selected SNP with large estimated effects
on the trait may be preferred (Weigel et al., 2010a). The Bovine SNP50 Chip
(Illumina, San Diego, CA, USA) genotyping assay with 54001 SNPs
(Matukumalli et al., 2009) has been, so far, the preferred and most
commonly used in dairy cattle. It is usually referred as the 50K density chip,

and was updated by a second version enhanced to 54609 markers in 2011.

Low density chips include the Golden Gate [llumina Bovine 3K with 2,900
SNPs. This technology was recently re-designed to improve imputation
accuracy in multiple breeds (Boichard et al., 2012), and has been replaced by
the Illumina BovineLD BeadChip using 6909 SNPs. Recently, a customized
Genseek Genomic Profiler assay is becoming popular. This chip includes
10K SNPs including those in the BovineLLD, some for parentage verification
and some markers related to diseases. The Affymetrix MegAllele GeneChip
Bovine Mapping offers similar density and has also been used in some
genotyping process (Sargolzaei et al., 2008). Ultra High density assay chips
include 777,962 SNPs for the [llumina BovineHD BeadChip or 640,000 for
the Affymetrix Axiom Genome-Wide BOS 1 Array. For most of those
purposes, high density platforms (>500K) offer new expectations. The use of
those “ultra-high density” assays may provide larger linkage disequilibrium
between SNPs and QTLs, and therefore, higher reliability of the estimations
(VanRaden et al., 2013). This increase may be of particular relevance in

situations in which using the current chips cannot obtain sufficient accuracy.

In addition, other customized SNP arrays were used within some genomic

programs, as the CRV 60,000-marker chip (De Roos et al., 2009).

International collaboration

In addition to the aforementioned joint RPs, a major international consortium
has now been established to pool records for dry matter intake, and feed

efficiency from Ireland, Australia, U.S.A. , The Netherlands, U.K. and
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Germany (De Haas et al., 2012; Veerkamp et al., 2012). Similar strategies
are expected in the near future. A similar approach was chosen by the most
important Brown Swiss populations (Austria, France, Germany, Slovenia,
Switzerland, and the United States), implementing a common GS framework

known as Intergenomics (Santus, 2011).

An important issue for the development of genomic selection is the
management of property rights on the information required for carrying out
genomic evaluations (Genotypes, phenotypes and pedigrees). This a key
point for marketing strategies and exchange of genotypes. Each country has
different policies regarding the ownership of genomic data. For instances,
genotypes belong to private companies, to farmers, or to different
organizations within the dairy cattle market as research centers, Al
companies, breeder associations, herd books, research projects or different

government departments (Loberg and Diirr, 2009).

Blending traditional and genomic information

Different sources of information have to be taken into account for the
publication of genetic merit. Dairy cattle programs are overwhelmed with
genetic evaluations for several production traits (kg of milk, fat and protein,
percentages of fat and protein...), functional traits (fertility, somatic cell
count, longevity...), and more than 16 linear type traits, plus their respective

genome-enhanced breeding values.

Researchers and industry partners have tried to provide a blended genomic
evaluation combining DGV and traditional proofs in different manners
regarding the country. Currently, there are phenotyped and genotyped
animals but also phenotyped but non-genotyped, genotyped but non-
phenotyped and animals without any of this information. A whole joint

evaluation is becoming another challenge nowadays.
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Currently, the most common option is running traditional evaluations and
genomic enhanced separately and then combine both results (Hayes et al.,
2009b; VanRaden, 2008). Usually, pseudo-data (DYD or breeding values)
are used as dependent variable for sire genomic evaluation which do not
have own phenotypes for the traits of interest, but do have reliable progeny
proofs. The blended genomic value contains information from DGV and
traditional proofs. Both values were initially weighted according to the
estimated reliability of each (VanRaden et al., 2009b), although some

modifications have been proposed recently.

DGV and traditional breeding values are still two different sources of
information and the optimal way to blend them is not completely clear yet.
In addition, reliabilities of genomic values and therefore reliabilities of
blending values have not a standard way of measurement. Even within a GS
program, the estimates of reliability depends on the animal amount of
information. For bulls with daughter information, VanRaden et al. (2009)
proposed a selection index for the predictor bulls that included: 1) direct
genomic prediction; 2) subset PTA; and 3) published PTA. Where subset
PTA refers to a traditional genetic evaluation considering only genotyped
animals. However, the computation of weights based on reliabilities of the

three sources of information is not clearly justified.

Blending DGV and PI could mask those individuals with large differences
between both sources of information. These cases are not evident to the
breeder. In practice, genomics is used as a source of additional information
to the traditional evaluations. Young candidates with different traditional and
genomic breeding values should be assesed based on the knowledge of both

evaluations independently.

To obtain reliabilities of blended genomic values, the R* from PI and from

the genomic based models were divided by mean reliability of daughter
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deviations. Then, the difference between the published and observed PI
reliabilities was added to the adjusted genomic R” to obtain the realized
genomic reliability. Following the same approach for blending genomic
values, Su et al. (2012b), computed expected reliabilities as the weighted
average of the original reliabilities, using the weights previously computed

for genomic values.

Some methods include a polygenic effect in the genomic prediction model
instead of posterior blending predictions. Incorporating pedigree information
does not improve prediction accuracy if genotyping is dense enough (Calus
and Veerkamp, 2007). Genomic evaluations are more consistent including it
but decreases the correlation between DGV and EBV of sires in the RP and
prediction accuracy is reduced as the polygenic variance increases (Liu et al.,
2011). However, proportion of variance explained by markers is trait
dependent (Jensen et al., 2012). These authors conclude that for all traits

analyzed more than 92% of all additive genetic variance could be explained

using 44K SNP markers. Also, further increases in marker density will have

limited effects on predictive accuracy, unless better methods are used to
distinguish between markers with real effects and markers with no effect.
With full sequencing for a substantial number of animals, SNP that are the
causative mutation or are closely linked to it may be identified. Identification
of those SNP may enable an increase in evaluation accuracy and a decreased

number of SNP needed for evaluation.

Results of this thesis are based on DGV using different evaluation
methodologies. However, the end products in actual implementations of GS
are GEBV blending DGV with traditional EBV. The aim of the thesis is the
study and comparison of genotypes, and methods. Using DGVs is justified

because they are less influenced by other sources of information.
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Genomic selection across populations

Combining data sets from different populations has been proposed as a way
to increase accuracy for small populations. Early simulation studies showed
that reliability improvement in joint populations depends on marker density
and genetic distance between populations (Roos et al., 2009). However,
some results with real data showed that no improvement was found when a
genomic relionship matrix was used and only slightly improvement when
Bayesian regression was used as the method of evaluation (Hayes et al.,
2009a; Pryce et al., 2011). In a similar study, Erbe et al. (2012a), found
greater accuracies for the smaller population in an across-breed evaluation
when the method of evaluation was Bayes-R, and the SNP’s were a subset of
the HD array including only those 58,532 SNP’s in the transcribed part of
the bovine genome. However, no improvement was found for the larger
population. Accounting for breed-specific SNP allele effects as suggested by
Ibanéz-Escriche et al., (2009) is an alternative to increase DGV reliability.
However it was not clearly demonstrated with real data using G-BLUP

(Makgahlela et al., 2012).

International evaluations

The traditional genetic evaluations from each country are combined in an
international evaluation, carried out by Interbull throughout the MACE
procedure. However, the complexity of genomic evaluation, the different
methods used in the respective national genomic evaluations and the
different dependent variable between countries, limit the implementation of
such a methodology on genome-enhanced breeding values. Greater efforts in
research are required to respond to this problem. Sullivan and VanRaden
(2009) proposed the G-MACE method that can deal with genomic data and
is no longer based on independence of data sets across countries, as far as the

group of involved countries is sharing data and genotypes to get better
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predictions. The first official results for international genomic validations
(GEBV Test) were published in the Interbull website in August 2010 for
protein yield. Data came from Canada, Denmark, Sweden, Finland, France,
Germany, Poland, New Zealand, Netherlands and United States. The
European commission has accepted as valid procedures within the European
Union, genomic evaluations from those countries validates through “GEBV
test”.The First Spanish genomic evaluations using the entire Eurogenomics

RP passed the GEBV test in May 2012.

Future developments

New Traits

GS offers additional benefits for those traits that are difficult to measure (e.g.
disease resistance, feed efficiency or meat quality), traits of low heritability
(e.g. related to fertility), sex linked (e.g. milk production), expressed at late
ages (e.g. longevity) or even those measured after slaughtering (e.g. Carcass
traits). An appropriate choice of individuals to be phenotyped and genotyped
might favor the implementation of GS for those traits. Genomic values can
be provided for the rest of the genotyped animals, when marker effects are
estimated in a correctly phenotyped population. The phenotype of the
candidates or their closest relatives is no longer required to provide accurate
predictions (Dekkers, 2010). However, genomic selection reliability is
expected to be greater for animals related to those individuals used as RP
(Pérez-Cabal et al., 2012). Phenotypic information of an indicator trait
genetically correlated with these new traits and recorded on a large scale can
be integrated in to the genomic evaluation model to improve the accuracy of

predictions for those traits (Calus and Veerkamp, 2007)
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Gene introgression

New genes introgression could be managed in a more efficient way using
marker information (Amador et al., 2012). These techniques might be of
interest for managing further progress on disease resistance, adaptation to
hard environmental conditions, for quality production or increase in

productive efficiency (Odegard et al., 2009).

Sources of genetic variability

Most of the methods applied in genomic selection exploit additive marker
variance (Gianola et al., 2009). However, other sources of variability such as
dominant or epistatic effects included in models of whole-genome evaluation

could increase the accuracy of predictions (Toro and Varona, 2010).

Full sequencing for a substantial number of animals should provide SNP that
are the causative mutations or that are closely linked. Identification of these
SNP may enable an increase in evaluation accuracy and a decreased number
of SNP needed for evaluation (Wiggans et al., 2011). Simulation studies
showed that, current methods used in genomic selection would not be able to
identify recent mutations affecting traits of interest (Casellas and Varona,
2011). In fact, SNPs with low minor allele frequency (MAF) are usually

removed during the quality control process before genomic evaluations.

In addition, copy number variations (CNVs), which represent a significant
source of genetic diversity in mammals, have been shown to be associated
with phenotypes. The cattle genome exhibits copy number variation within
and between breeds (Fadista et al., 2010). Other structural variants or signals
that are identified through SNPs, such as epigenetic effects, may play also an
important role in current evaluations of breeding values (Gonzalez-Recio,
2012). Taking into account these sources of variation could increase

reliability of predicted breeding values in the future.
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Imputation

Despite the improvement in reliability of young selected candidates,
genomic selection may be economically unfeasible in commercial farms due
to an unaffordable genotyping price. Genotyping was initially restricted to
males and elite females in most dairy cattle populations. So, a key point in a
genomic selection program is the optimization of genomic information in
breeding programs (Pryce and Daetwyler, 2012). Low density SNPs panels
have been developed with the objective of reducing genotyping costs. Less
expensive low density genotyping platforms have increased the number of
genotyped animals. However, performance of low density panels, in terms of
predictive ability, is not competitive for most cases. Imputation methods
have been developed to solve this problem. Accurate genotype imputations
(or predictions) of those SNP not included in the low density chip may be
obtained using high density genotypes as reference. Imputation methods
combine a “reference panel” of individuals genotyped at a dense set of
polymorphic sites (usually SNP’s) with a sample from a genetically similar
population genotyped at a subset of sites out of the dense set of
polymorphisms (Howie et al., 2009). Imputation capitalizes on the linkage
disequilibrium between SNPs in the high density panel, with the premise that
SNPs with large linkage disequilibrium are inherited jointly.

One of the first steps in the imputation process is to phase haplotypes.
Usually, genotypes do not provide phase of the haplotypes. In a biallelic
locus, phase is unknown for heterozygote individuals. Older phasing
methods often use linkage information (Sobel and Lange, 1996), and provide
the most probable phase between SNPs according to haplotype frequencies.
Phasing methods that solely rely on LDQ tend to mistakenly introduce
recombinations when applied to genotypes covering long genetic distances

(Kong et al., 2008). For this reason, some methods introduce family
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relationships. Family based algorithms could increase imputation accuracy (

e.g., Albers et al., 2007; Ding et al., 2007).

Imputation could be useful for incorporating animals genotyped at low
density into genetic evaluations; e.g commercial females. The inclusion of
some of these animals could increase the size of the RP for SNP effects
estimation in low h? traits, preselection of progeny testing candidates or
genomic mating design. In addition, these chips with lower prices would
allow implementing genomic selection in species or breeds in which current
cost is not affordable, for instances, species with a reduced individual value,
like poultry, sheep or swine. Combination of the information from different

SNPs platforms is also possible after imputation process (Druet et al., 2010).

Genotyping a large RP at extra large high density could be cost prohibitive.
Therefore, it is possible to genotype a subset of the RP at high density and
then to impute the remaining genotypes. The predictive accuracy of a
posterior genomic evaluation should be checked to ensure that it out-

performs the results obtained before the imputation.

Reference population for imputation

Currently, different density chips are marketed. Genomic programs
including genotyping strategies need a RP for imputing missing SNPs. The
RP must include a representative sample of the genetic background of the
whole population, with similar allelic frequencies as the population to be
imputed (Hao et al., 2009). Phenotypic information of reference animals is
not needed for imputation. The imputation accuracy is function of the
relatedness between animals in the RP and those to be imputed (Meuwissen
and Goddard, 2010). For instance calves genotyped at high density are a
good source of information in order to impute their dams or sisters
genotyped at lower density. However, a priori, the highly represented bulls

in the population or animals from most common matings (sire X maternal
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grand sire) are good candidates to be genotyped as RP. The RP should also
be large. The larger the population size, the larger the imputation accuracy.
Animals in the RP should be genotyped with the higher density SNP
platform possible (Weigel et al., 2010c). In a genomic program integrating
different SNPs panels an additional RP for imputation purposes should be

considered.

Methods, imputation accuracy and reliability of imputed
genotypes

Several methods have been developed for imputation, and different software
are currently available (Kong et al.,, 2008). Imputation methods can be
compared by the error rate of imputation, which is the percentage of SNPs
incorrectly imputed. In a comparison study of different software carried out
by (Biernacka et al., 2009) Mach (Li and Abecasis, 2006) and Impute
(Marchini et al., 2007) produced lower imputation error than Plink (Purcell
et al., 2007) and Fastphase (Scheet and Stephens, 2006) on a rheumatoid
arthritis case-control data set. For all methods, imputation is more reliable
for SNP genotypes that are in strong LD and those with lower MAF (Pei et
al., 2008). In a similar comparison between Impute, Mach, Beagle
(Browning and Browning, 2009) and Plink, the latter performed consistently
poorer than the other three. Based on those results, Nothnagel et al. (2009)
recommended Mach or Beagle because these programs are more user-
friendly and require less memory than /mpute. Pei et al. (2008) found better
results when imputation is carried out by Mach and Impute instead of
Fastphase, Plink or Beagle. In another study, Beagle was similar or more
accurate than Fastphase, Impute or Mach for SNP imputation from different
assays, and was also competitive in terms of computational efficiency

(Howie et al., 2009).
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Regarding dairy cattle genotypes, low density genotypes (2-4K) could be
accurately imputed to high density genotype (50K) (accuracy above 90%).
Weigel et al., (2010b) reported accuracies of 0.869, 0.758, 0.709 or 0.687
using Fastphasel.2 and 0.926, 0.887, 0.758 or 0.7 12 with /mpute 2.0 when
90, 95, 98, or 99% of BovineSNP50 genotypes were masked in a population
of 3,146 North America Jersey cattle.

Recently, other software has been developed for animal breeding programs.
These methods are designed to combine population and pedigree
haplotyping such as Findhap.f90 (VanRaden et al., 2011), Flmpute
(Sargolzaei et al., 2011), Alphalmpute (Hickey et al., 2012) or Phasebook
(Druet and Georges, 2010), the latter being based on Beagle. When those
new approaches are compared, Beagle was shown to be about twice as
accurate as Findhap (Segelke et al., 2012). Johnston et al. (2011) concluded
that: Fimpute was the fastest program and was the most accurate software
program for animals using family information, while Beagle was the most

accurate software for animals with limited family information.

Some of the aforementioned software Beagle (v3.3), Impute (v2.0),
Fastphase (v1.4), Alphalmpute, Findhap(v2), and FImpute(v2), were
included in an ensemble-based system considering each method as a
classifier. Beagle and FImpute had the greatest accuracy among the six
imputation packages, the best imputation accuracies were those that had
Beagle as first classifier in the proposed ensemble (Sun et al., 2012). A
different approach was proposed by Calus et al. (2011) in this case using a
multivariate mixed model framework. This new approach over-performed
Fastphase and Beagle when genotyping density was low, but Beagle
outperformed the other methods at high SNP density.

Once low density genotypes have been imputed to high density, it is possible

to estimate the genomic values with similar accuracy than that obtained with
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high density genotyping (Berry and Kearney, 2011). Accuracy of DGV of
young selection candidates could be increased after imputation compared to
those from pure low density typed SNP. Weigel et al. (2010a) showed that
animals genotyped at low density but with enough phenotypic information,
could be included in the RP after imputation to higher density panels. The

overall accuracy of SNPs effects estimation was increased.

Low density SNP panels could be designed using those SNP more
informative in terms of predictive ability. Young Holstein Bulls genotyped
for 300 to 2000 highly selected SNP could provide DGV for lifetime merit
with correlations of 0.43 to 0.57 with future PTA, while correlation using the
BovineSNP50 Beadchip achieved a correlation of 0.61 (De los Campos et
al., 2009). For individual traits, platforms with 500 to 1000 selected SNP,
where selection was based on the largest estimated effects resulted in

correlations of 0.55 to 0.65 with PTA from progeny testing.

However, dairy cattle genetic programs include several traits with different
informative SNPs for each of them. Under this scenario, low density
platforms designs based on evenly spaced SNPs are preferred to obtain good
predictive accuracy across traits. In a Jersey cattle study based on 1446 sires
genotyped with 42556 SNPs, genomic values were estimated showing a
correlation of a 70,6% with sires PTAs from traditional evaluations. After
removing a 93% of the SNPs based on equidistant physical location and high
minor allele frequency of remaining, (equivalent to 3K chip) and posterior
imputation of these SNPs, average correlation with PTAs was 0.685 (Weigel
et al., 2010c). A critical issue with imputed genotypes is how to integrate
them effectively into the genomic evaluation system. One can use these
posterior probabilities directly or pick up the ‘‘best-guess’ genotype to

perform the subsequent evaluation (Pei et al., 2010).

-62 -



General Introduction

-63 -

Objectives



Chapter 1

- 64 -



General Introduction

The first step in the implementation of genomic selection is to create a RP of
genotyped animals. The RP is used to train a statistical model that estimates
the effects of each SNP or genomic combinations between phenotypes and
SNPs (or combination of SNPs). The estimates obtained from the RP allow
the prediction of genomic breeding values for new individuals with the only
source of information of their DNA (Dekkers, 2010). The characteristics of
these RP, like the size or the animals included, is relevant to increase the
accuracy of future predicted DGV (Hayes et al., 2009a; VanRaden et al.,
2009b). Most countries only have sires genotyped as RP (Loberg and Diirr,
2009). They are a good representation of the genetic structure of the
population, and achieve high reliabilities due to the large amount of
information generated by their daughters. However, many programs have a
limited number of highly reliable sires that precludes high reliabilities of
genomic predictions (VanRaden et al., 2009a). The efficiency of those
programs could improve considering international agreements for joining
several RP or alternative selective genotyping. The inclusion of the most
informative females should be evaluated for this purpose (Spangler et al,
2008; Sen et al., 2009). It can be hypothesized that the genotypes of large
female populations are an alternative to improve the accuracy of the genomic

evaluations.

After genotyping a RP, different approaches are currently used for
estimating genomic values, and it is important to assess the performance of
diverse methodologies and identify the methods that provide the greatest
predictive ability in a given population. Genomic prediction methods can be
categorized as: 1) methods that regress phenotypic records on SNP markers
directly, and 2) methods that compute genomic values as a function of the
genomic relationship using a (co)variance structure between subjects (De los
Campos et al., 2009). Several methods have been developed but no one

shows clear advantages over the others in terms of prediction ability and
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almost every country is following their owns developments. If some
methodology over-performs the others some convergence should be
expected in the future. Machine Learning algorithms are an appealing
alternative to Bayesian regressions and G-BLUP. These methodologies have
emerged recently, and are aim to optimize predictive ability in a data set
without adjusting a specific pattern of inheritance. Boosting is one of the
machine learning algorithms implemented for genomic selection with great
predictive ability (Ogutu et al. 2011). This is also a suitable alternative to

other methods used for genomic evaluations (Gonzalez-Recio et al., 2010).

Despite the improvement in reliability of young selected candidates,
genomic selection may be economically unfeasible in commercial farms due
to an unaffordable chip price. So, next key point in a genomic selection
program was the optimization of genotype density in candidate animals
(Pryce and Daetwyler, 2012). Low density SNPs panels have been
developed for this purpose. Low density genotyping platforms have increase
the number of genotyped animals due to their low prices. However,
performance of low density panels in terms of predictive ability is not
competitive for most cases (Weigel et al., 2009). Imputation methods have
been proposed with the aim to solve that problem. These methods combine a
“reference set” of individuals genotyped at a dense panel of polymorphic
sites (usually SNP’s) with a set from a genetically similar population

genotyped at a subset of those sites in the dense panel (Howie et al., 2009).

Several methods have been proposed for imputation, and different software
are currently available (Kong et al., 2008). Among them, Beagle (Browning
and Browning, 2009) is reported as competitive when compared to other

approaches (Johnston et al., 2011; Segelke et al., 2012; Sun et al., 2012).
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The main objective of this thesis was to contribute to the implementation of
genomic selection in the Spanish dairy cattle, which occurred in parallel to

the development of this Doctoral thesis.
The specific objectives were

1) The creation of a reference population sufficiently informative when the

progeny tested sire population is limited.

2) The development of a competitive and reliable genomic evaluation in
terms of prediction accuracy, computationally efficient and flexible for

further future developments.

3) The implementation of a flexible and efficient imputation design for

different density genotypes.
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The design of the reference population is fundamental to maximizing the
benefits of genomic selection. Currently, most of the animals genotyped are
sires; however, the number of sires available in some populations might not
be enough to make an appropriate genomic evaluation. This study presents
an optimal genotyping design that includes females in the reference
population, suggesting that two-tailed strategies are preferable to increase

the reliability of genomic selection in small cattle populations.
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Abstract

This study evaluated different female-selective genotyping strategies to
increase the predictive accuracy of genomic breeding values in populations
that have a limited number of sires with a large number of progeny. A
simulated dairy population was utilized to address the aims of the study. The
following selection strategies were used: random selection, two-tailed
selection by yield deviations, two-tailed selection by breeding value, top
yield deviation selection, and top breeding value selection. For comparison,
two other strategies: genotyping of sires and pedigree indexes from
traditional genetic evaluation were included in the analysis. Two scenarios
were simulated, low heritability (h’=0.10) and medium heritability (h*=0.30).
Genomic breeding values were estimated using the Bayesian Lasso. The
accuracy of predicted genomic breeding values using the two-tailed
strategies was better than the accuracy obtained using other strategies (0.50
and 0.63 for the two-tailed by yield deviations strategy and 0.48 and 0.63 for
the two-tailed by breeding values strategy in low- and medium-heritability
scenarios, respectively, using 1000 genotypes of cows). When 996
genotyped bulls were used as the training population, the sire’ strategy led to
accuracies of 0.48 and 0.55 for low- and medium-heritability traits,
respectively. The random strategies required larger training populations to
outperform the accuracies of the pedigree index, but selecting females from
the top of the yield deviations or breeding values of the population did not
improve accuracy relative to that of the pedigree index. Bias was found for
all genotyping strategies considered, although the top strategies produced the

most biased predictions.

Strategies that involve genotyping cows can be implemented in breeding
programs that have a limited number of sires with a reliable progeny test.
The results of this study showed that females that exhibited upper and lower

extreme values within the distribution of yield deviations may be included as
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training population to increase reliability in small reference populations. The
strategies that selected only the females that had high estimated breeding

values or yield deviations produced suboptimal results.
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Introduction

Genomic selection (GS) is the most promising tool that has emerged for
increasing the genetic gain rate in livestock (Weigel et al., 2010). Genetic
evaluations that use genomic information aim to increase the accuracy of
breeding value predictions. Genomic evaluations have focused mainly on
sire breeding value predictions (EBV) that use daughter yield deviations
(DYD) as the response variable in reference populations because sires have a
larger impact on breeding programs than cows, and their DYDs are more

accurate than cow phenotypes (Calus, 2009).

In genomically assisted evaluations, a reference population is needed to
estimate marker effects that account for linkage disequilibrium between
markers and quantitative trait loci (QTL). The characteristics of the training
population, e.g., its size or the selection of the animals to genotype, are
important for increasing the accuracy of genomic predictions (Hayes et al.,
2009; VanRaden et al., 2009a). There are challenges in reaching sufficiently
high predictive accuracy, especially in small populations and particularly for
low heritability traits (VanRaden et al., 2009b). In most countries, only sires
have been genotyped and included in the reference population (Loberg and
Diirr, 2009) because bulls drive the genetic structure of the population and
provide high predictive accuracy due to the large amount of information
from their daughters’ averages. In some countries, however, there are a
limited number of sires that have been progeny-tested, and this hampers the
accuracy of the predictions in test populations (VanRaden et al., 2009b);

thus, alternative strategies are required.

For instance, international collaborations for joining different populations
have helped to increase population sizes (Wiggans et al., 2008; Cromie et al.,

2010; Lund et al., 2010).
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GS can be enhanced using female genotypes because economically
important traits are measured in the female population, and cows comprise
the largest proportion of the Holstein population. In addition, increasing
attention has been directed at recording functional traits, particularly health
traits. Female reference populations for genomic selection of those new
phenotypes could be feasible (Ducrocq and Santus, 2011). Dominant and
epistatic effects can be captured and exploited. The relationship between the
genotype and phenotype of a cow is expected to be stronger than the
relationship between a sire’s genotype and his daughter phenotypes.
Currently, in some genomic programs, the best females, which are
candidates for bull dams, are being genotyped (Loberg and Diirr, 2009).
However, with large numbers of selection candidates in the female
population, a pre-selection of genotyped animals is needed to optimize
genotyping costs (Blonk et al., 2010). Selective genotyping of the most
informative individuals might increase genotyping efficiency (Spangler et
al., 2008; Sen et al., 2009). However, there has been very limited research as
to which animals are most informative in terms of single nucleotide
polymorphism (SNP) effects and genomic predictions when females are

used in the reference population.

The aim of this study was to evaluate female-selective genotyping strategies
using simulation and to increase the predictive accuracy of genomic
breeding values (GBVs) in populations that have a limited number of sires
with large number of progeny.
Materials and methods

Simulations

Phenotypes and genotypes were simulated to mimic a dairy cattle population

based on 996 progeny-tested sires and 40000 dams. These recorded and
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genotyped animals were used to select different training populations in

genomic selection programs.

The simulation was performed with the QMSim software (Sargolzaei and
Schenkel, 2009) using the following parameters: 1,000 historical generations
were generated to produce a realistic level of linkage disequilibrium (LD)

similar to that obtained for the currently used 50 K SNP chip.

LD, the non-random association of alleles between two loci, was measured
using the r* parameter (Hill and Robertson, 1968). LD can be estimated using
other measurements, such as D, D" or different measures based on the chi-
squared statistic (Zhao et al., 2005); however, 12 is the most common
measure of LD for biallelic markers, and it is less sensitive to the effects of

allelic frequency (Sargolzaei et al., 2008).

The first historical population was composed of 1000 females and 400
males. During the 1,000 historical generations, the population size decreased
from 1,400 to 400 individuals with the same sex ratio, which mimicked a
bottleneck and a decrease in the effective number (N,) to account for the
evolution of the historical Holstein effective population size (Hayes et al.,
2003; Sorensen et al., 2005). Previous simulation studies have used a similar
effective number (e.g., Meuwissen et al., 2001). Following the bottleneck,
historical population size was extended for 40 added generations. Then,
20,000 females and 300 males from the last historical generation were used
as founders. Similar strategies (shrinkage and expansion of the population)
have been used in simulations of dairy cattle populations (Habier et al.,

2009, De Roos et al., 2009).

From this founder population and based on BLUP EBVs, 15 overlapping
generations of selection were simulated as contemporary born animals. The
population was under random mating between selected animals, and the

average sex ratio was 0.5. During the 15 periods of selection, 51 out of 300
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tested sires were selected as proven bulls (17%), and 9,000 out of 20,000 of
the dams were culled (45%). Selection and culling criteria were based on
EBVs. Individuals from the next offspring replaced culled animals. This
overlapping active population was used to mimic a scaled representation of a
dairy cattle population having higher selection intensity in males than in
females. Individuals from progeny sets 10 through 15 were genotyped and
used to create the training and validation sets. Genotyped animals had at

least 10 generations of traditional selection and pedigree depth.

The simulated genome consisted of 30 chromosomes (100 cM each), and the
recombination rate was adjusted to this distance. With the objective of
obtaining a desired LD between adjacent SNPs, 9990 biallelic markers were
equally spaced out over the genome. Additive genetic effects were
determined by ninety quantitative trait loci (QTL) that were simulated and
randomly distributed along the genome. QTL effects were generated based
on a gamma distribution with a shape parameter equal to 0.4 (Hayes and
Goddard, 2001; Meuwissen et al., 2001). QTL allelic effects were first
sampled from the gamma distribution in such a way as to be positive or
negative with a probability of 0.5. As expected, most of the QTL had a small
effect, but others had a large effect. The mutation rate was fixed at 2.5e-5,
and the number of crossovers was sampled from a Poisson distribution with
positions randomly distributed. The new variants and the selection process as
well as drift and Bulmer effects modified the genetic variance. True breeding
values (TBVs) were calculated by summing all QTL effects and were
subsequently scaled to a realized genetic variance of 1. Distributions of the

QTL effects of the traits are shown in Figure 2.1.
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Figure 2.1 Distribution of simulated QTL effects: (a) 0.30 heritability trait
scenario and (b) 0.10 heritability trait scenario.

The simulation study included two scenarios in terms of heritability (0.10
and 0.30). For each animal from sets 10 through 15, pedigrees, true breeding
values, phenotypes, and genotypes were simulated, and breeding values were
estimated. Analyses were performed on 10 replicates (five per trait), and the
strategy and sizes of the training sets were designed to be sufficient for the

aim of the study.

Selective Genotyping Strategies

Animals from progeny sets 11 through 14 represented a contemporary
overlapping active population of 40,000 females. From them, 1000, 2000,
and 5000 females were selected and genotyped as training sets based on the

following strategies:
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1. At random (RND). - Females were randomly selected from the available

population (generations 11 through 14).

2. Two-tailed Yield Deviation values (TTYD). - An equal number of
females were selected from the lowest o/2 and the highest (1-0/2) percentiles

of the yield deviation distribution (for =0.025, 0.05, and 0.125).

3. Two-tailed EBVs (TTBV). - This subset represented a selection of
females that had estimated breeding values in the lowest a/2 and highest (1-

a/2) percentiles of the distribution (for ¢=0.025, 0.05, and 0.125).

4. Highest Yield Deviation values (TopYD). - In this strategy, cows that had
yield deviations in the 1-a percentile (for ¢=0.025, 0.05, and 0.125) were

selected.

5. Highest EBVs (TopBYV). - Cows that had estimated breeding values in the
1-a percentile (for 0=0.025, 0.05, and 0.125) were selected.

Genotyping strategies based on animals selected by their breeding values
were included to evaluate the information provided by the pedigree and its
effects on the accuracy of the genomic evaluation relative to the true

breeding values.

As a reference, all sires (996) from progeny sets 10 through 13 were
genotyped (SiresDYD). The distribution of family sizes showed values
consistent with a dairy population of 40,000 contemporary cows (Figure

2.2).
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Figure 2.2. Distribution of the number of daughters per sire in (a) 0.30
heritability trait scenario and (b) 0.10 heritability trait scenario.

For each selection period, sires with higher EBVs were allowed to breed a
new crop of progeny. Sires that had fewer than 40 daughters represented
discarded progeny-tested bulls that were excluded after their first crop of
daughters. In each period, 17% were proven bulls; Gonzalez-Recio et al.
(2005) reported a similar value for successful progeny-tested bulls in a

progeny test program in Spain.

Daughter yield deviation was used as a dependent variable in the analysis of
the SiresDYD strategy. When training and testing datasets overlap,
evaluations of realized accuracies for genomic predictions can result in
overconfidence (Amer and Banos, 2010); therefore, to avoid overlap
between training and testing subsets, males of progeny sets 14 and 15 were
excluded from the analysis. In addition, the records from cows from the last
crop of daughters (15) were excluded from the estimates of DYD, as these
animals were included in the validation set. To account for different
accuracies in the DYD estimations, these values were weighted by their
prediction error variances in terms of number of daughter equivalents

(VanRaden and Wiggans, 1991).
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Genomic Evaluation Model

The Bayesian version of the LASSO method (de los Campos et al., 2009)
was used to estimate SNP coefficients in the training populations. The
response variables in the females strategies were the yield deviations, which
are a result of a combination of a cow’s genetic and residual values. Fixed
effects were not simulated. The yield deviation was used as a dependent
variable in the evaluation of all of the female-based selective genotyping
strategies, including the strategies in which selection was based on breeding
values. A single chain of Gibbs sampling was run using 10,000 iterations

and a burn-in period of 2,500. Convergence was checked visually.

Accuracy of genomic evaluations

Accuracy is a common measurement of predictive ability (Goddard and
Hayes, 2007; Luan et al., 2009) in genetic prediction studies. Accuracy was
quantified using Pearson correlations between the predicted GBV and true
breeding values simulated for generation 15. Means and standard deviations

after five replicates were calculated for each strategy and trait.

Bias and MSE

True breeding values were known in the simulation. The average difference
between the true and the predicted GBVs in the testing population provided
a measure of the bias in the genomic predictions for each selective
genotyping strategy. In addition, regression coefficients of traditional on
genomic breeding were calculated for the SiresDYD strategy. Mean square
error (MSE) of the estimator was calculated as prediction error. MSE was
used as a risk function to quantify differences between the estimator and the

true value.

In addition, regression coefficients of true on estimated genomic breeding

values were estimated, averages and standard deviations of intercepts, slopes
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and coefficients of determination were calculated for all considered
strategies and sample sizes. Regression coefficients are usually considered as

bias predictors when true breeding values are not known.

Results

Simulated population

In both scenarios (heritability either 0.10 or 0.30), the average LD (1’
between adjacent markers) in generations 11 through 15 (training and testing
sets) was 0.31. High LD values were observed only at small distances
between pairs of SNPs (Figure 2.3). All chromosomes were simulated using
the same parameters, and therefore, differences between them were not

expected.

In the medium- and low-heritability scenarios, the average inbreeding
coefficients in the last generation were 0.03 and 0.05, respectively, and the
average accuracies of the pedigree indices were 0.35 (sd=0.05) and 0.41

(sd=0.04), respectively.
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Figure 2.3. Distribution of r* between single-nucleotide polymorphism (SNP)
pairs and physical distance: (a) chromosome 1 for the 0.10 heritability trait and
(b) chromosome 7 for the 0.30 heritability trait.

Accuracy of genomic evaluations

The accuracy of genomic evaluations depended on the selective genotyping

strategy used for the training set (Figure 2.4).

The predictive accuracy of the medium-heritability trait was greater than the
accuracy of the low-heritability trait. As the size of the training populations
increased, accuracies reached upper limits of approximately 0.75 (h*=0.30)
and approximately 0.70 (h*=0.10). In the low- and medium-heritability traits,
the accuracies of the SiresDYD strategy were 0.48 and 0.55, respectively,
which indicated 37% and 34% increases, respectively, in accuracy relative to

the accuracies of the pedigree indices (0.35 and 0.41, respectively).
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Figure 2.4 Estimated accuracies for genomic breeding values for two different
heritabilities (0.10 and 0.30) in testing sets when 1000, 2000, or 5000 females in
the training set were genotyped. The following genotyping strategies were used:
cows at random (RND), top yield deviation cows (TopYD), top breeding value
cows (TopBV), two-tailed yield deviation cows (TTYD), two-tailed breeding
value cows (TTBYV), all sires (SiresDYD), and pedigree index without GS.

Only the TTYD and TTBV strategies produced predictive accuracies that
were better than those of the SiresDYD strategy (Table 2.1). When 1000
cows were genotyped as training set, in the TTYD strategy, the accuracies
for low- and medium-heritability traits were 0.50 and 0.63, respectively. In

the TTBV strategy, the corresponding values were 0.48 and 0.63.
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Table 2.1. Average differences in the accuracy of predicted GBVs and standard
deviations (in parenthesis) for each selective genotyping strategy” versus the
SiresDYD" strategy based on the heritability and use of different female
training sets and population sizes from a contemporary population of 40,000
animals

X Size of Two-Tailed Values Top Values Random
h Phen. EBV Phen. EBV
Trainingset (TTYD)° (TTBV)" (TopYD)® (TopBV)"  RND#

1000 0.08(0.05) 0.08(0.06) -0.42(0.11) -0.60(0.12) -0.18(0.08)
0.3 2000  0.14(0.07) 0.12(0.07) -0.34(0.08) -0.58(0.13) -0.06(0.05)
5000  0.18(0.09) 0.13(0.08) -0.21(0.07) -0.45(0.11) 0.06(0.08)

1000 0.02(0.02) 0.00(0.08) -0.41(0.09) -0.58(0.09) -0.29(0.07)
0.1 2000  0.11(0.04) 0.01(0.08) -0.38(0.11) -0.55(0.09) -0.16(0.05)
5000  0.18(0.06) 0.04(0.07) -0.29(0.07) -0.51(0.06) -0.04(0.06)

* Genotyping strategies for the training set

P Results are compared to a male genotyping strategy (SiresDYD), which genotypes all sires in the
population as the training set (accuracies of the SiresDYD strategy were 0.48 and 0.55 for the 0.10 and
0.30 heritability traits, respectively).

“TTYD (Females with yield deviation in the 0/2 and 1-o/2 percentile)”.

“TTBV (Females with EBVs in the /2 and 1-0/2 percentile)".

“TopYD (Females with yield deviation in the 1-a percentile)".

"TopBV (Females with EBVs in the 1-a percentile)”.

SRND (Females selected at random)".

h(for a=0.025, 0.05, and 0.125).

In both the low- and medium-heritability scenarios, the use of two-tailed
yield deviations data from generations 11 through 14 as criteria for the
selection of animals in the training set produced the highest predictive
accuracy regardless of the size of the training population. In all of the
strategies, accuracy improved as the number of records in the training set
increased. When the size of the training set increased from 1000 to 5000
genotyped cows, the RND strategy produced a greater increase in accuracy
than the other strategies. Nevertheless, the accuracies of the RND strategy
were always less than those produced by the two-tailed strategies. The
accuracy of the RND strategy was greater than that of the SiresDYD strategy
only when 5000 cows were genotyped as the training set in the medium-

heritability scenario.
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Strategies based on the best females (TopYD and TopBV) produced the
lowest accuracies, and at small training population sizes, the Top strategies

produced negative values.

The heritability of the trait affected accuracy (Goddard and Hayes, 2009).
The populations in our study required more than 5000 cows (12.5% of the
simulated population) in the training set to achieve accuracy >0.66 in the

low-heritability scenario.

Bias and MSE

Pedigree index predictions were biased in 0.01 trait units, which was lower
than the values from the genomic predictions. The female-based selective
genotyping strategies exhibited biases that were between those of the
SiresDYD and the pedigree index (Table 2.2). Strategies that selected top
animals only, including SiresDYD, produced more biased estimates than the
other strategies (e.g., the SiresDYD strategy produced -0.97 and -2.23 for the
low- and medium-heritability traits, respectively). The TopYD strategy
produced the most biased estimate for the 0.10 heritability trait, and it gave
the second-most biased prediction (after SiresDYD) for the 0.30 heritability
trait (bias=1.74). In the Top and Random strategies, increases in the size of
the training population reduced the bias. The RND strategy showed bias
equal to 17% of that found in the SiresDYD strategy.
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Table 2.2. Bias and mean square error (MSE) of genomic predictions in the
testing set for different genotyping strategies, training set size and heritability

Size of

Genotvped Two-Tailed Values Top Values Random
fg?n}ilﬁz Phen. ~ EBV  Phen. ~ EBV . SiresDYD"
h2 set (TTYD) (TTBV) (TopYD) (TopBV)
0.45 0.42 2.06 1.15 -0.15 -0.97
1000 (0.18) (0.06) (0.03) (0.09) (0.04) (0.12)
0.10 0.56 0.53 1.80 0.95 -0.09
’ 2000 (0.18) (0.09) (0.03) (0.09) (0.03)
0.52 0.52 1.41 0.64 -0.04
BIAS 5000 (0.11)  (0.08)  (0.04)  (0.08)  (0.03)
0.45 0.35 1.74 1.28 -0.36 -2.23
1000 (0.10) (0.06) (0.02) (0.06) (0.09) (0.32)
0.30 0.57 0.43 1.48 1.04 -0.26
’ 2000 (0.10) (0.08) (0.03) (0.07) (0.06)
0.55 0.42 1.10 0.68 -0.16
5000 (0.06) (0.06) (0.05) (0.09) (0.03)
0.51 0.38 4.32 1.41 0.10 1.00
1000 (0.27) (0.04) (0.09) (0.19) (0.02) (0.24)
0.10 0.66 0.48 3.32 1.01 0.08
' 2000 (0.28) (0.10) (0.08) (0.15) (0.01)
0.55 0.44 2.05 0.52 0.07
MSE 5000 (0.16) (0.09) (0.09) (0.09) (0.01)
0.64 0.42 1.84 1.41 0.29 5.20
1000 (0.19)  (0.04)  (0.09)  (0.19) (0.11)  (1.48)
030 0.75 0.45 1.29 1.01 0.20
' 2000 (0.17)  (0.08)  (0.09)  (0.15)  (0.07)
0.63 0.40 0.66 0.52 0.14
5000 (0.09) (0.06) (0.08) (0.09) (0.01)

“Bias measured as the difference between estimated and true breeding values (in genetic value units).

°Genotyped training set size = 996 animals for the SiresDYD strategy.

The biases in the two-tailed strategies were about 50% and 75% lower than

those in the SiresDYD with the same training set size (Table 2.2). In the

two-tailed strategies, an increase in the number of animals in the training set

did not substantially reduce the bias. All but the RND and SiresDYD

strategies overestimated the breeding values. To calculate DYD, the

SiresDYD strategy used the records from the entire female population,

whereas the Top strategies selected only the cows in the upper tail of the

distribution, which might be why the SiresDYD showed a bias that was more
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similar to the RND strategy. Similar patterns were apparent in the MSE; the
RND and two-tailed strategies produced the lowest MSE. The MSE of the
RND strategy was similar to that of the pedigree index and lower than that of

the SiresDYD strategy with the same training set size.

In addition to bias results, regression coefficients of true on estimated
genomic breeding values were calculated (Table 2.3, Table 2.4 and Table
2.5). Because of large differences between replicates for the "top" strategies,
due to low accuracy, mean values across replicates are not informative.

Table 2.3. Averages and standard deviations of intercepts, of genomic

predictions in the testing set, for different genotyping strategy, training set size
and heritability regressions

Size of Two-tailed
Gen‘?tY,P ed Values Top Values  Random _. a
Training SiresDYD
set Phen. EBV  Phen. EBV
’ (TTYD) (TTBV)(TopYD) (TopBV) RND
h
1000 1.23 1.17 0.22 2.15 1.16 -1.83
(0.09) (0.07) (0.95) (0.15) (0.10) (0.10)
0.10 2000 1.19 1.13 0.25 1.94 1.04
(0.09) (0.06) (1.00) (0.17) (0.10)
5000 1.11 1.05  -0.11 1.75 0.88
Intercept (0.09)  (0.06) (0.73) (0.14) (0.07)

1000 242 222 263 459 074 2.79
(0.26) (0.28) (3.16) (0.54) (0.70)  (0.33)
030 2000 232 206 321 404 071
(0.19) (0.24) (2.63) (0.51) (0.57)
5000 212 188 377 235 0.69

(0.17) (0.22) (2.77) (1.22) (0.39)
*Genotyped training set size = 996 animals for the SiresDYD strategy.

Table 2.4. Averages and standard deviations of slopes of genomic predictions in
the testing set, for different genotyping strategy, training set size and
heritability regressions
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Size of

Two-tailed
Gen‘?tY,P - Values Top Values  Random _. a
Training SiresDYD
set Phen. EBV  Phen. EBV
h’ (TTYD) (TTBV)(TopYD)(TopBV) RND

1000 021 024 038 -0.17 033 0.75
0.04) (0.06) (0.29) (0.09) (0.15)  (0.23)
0.10 2000 022 025 041  -0.10 039
(0.03) (0.06) (0.30) (0.08) (0.15)
5000 026 028 057 -0.03 048
Slope (0.04) (0.08) (0.27) (0.10) (0.11)

1000 032 037 114 -017 087 1.16
0.04) (0.07) (0.60) (0.14) (0.25)  (0.26)
030 2000 033 040 130 -0.07 086
(0.05) (0.08) (0.54) (0.19) (0.20)
5000 038 045 152 030 0.4
(0.06) (0.09) (0.60) (0.34) (0.15)

*Genotyped training set size = 996 animals for the SiresDYD strategy.

All strategies showed values different than O for the intercept and 1 for the
slope regression as expected for unbiased predictions. In both cases, RND
strategies were less deviated from the expected values than the TTBV and
TTYD strategies. Finally, in the comparison between SiresDYD and two
tailed strategies, averaged intercept estimation was closer to that expected
for TTBV and TTYD, while the slopes of SiresDYD strategies were notably

closer to 1 than the slopes of the two tailed strategies.
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Table 2.5. Averages and standard deviations of coefficients of determination of
genomic predictions in the testing set, for different genotyping strategy,
training set size and heritability regressions

Size of

Two-tailed
Genqtyped Values Top Values Random _. .
Training SiresDYD
set Phen. EBV  Phen. EBV
h? (TTYD) (TTBV) (TopYD)(TopBV) RND

1000 026 023 001 001 004 0.24
(0.11)  (0.07) (0.01) (0.01) (0.03)  (0.12)
0.10 2000 035 024 001 001 0.09
(0.11)  (0.06) (0.02) (0.01) (0.05)
5000 044 027 004 001 020
P (0.11) (0.08) (0.03) (0.01) (0.07)

1000 041 040 002 000 0.17 0.28
(0.09) (0.08) (0.02) (0.00) (0.10)  (0.14)
0.30 2000 047 045 005 000 025
1000 026 023 001 00l  0.04 0.24
(0.11) (0.07) (0.01) (0.01) (0.03)  (0.12)
0.10 2000 035 024 001 001 0.9

*Genotyped training set size = 996 animals for the SiresDYD strategy.

Discussion
Parameters of the simulated population

Quality control of the simulation before genomic evaluations was based on
the LD between adjacent markers, the level of decay in LD with respect to
the distance between SNPs, inbreeding values and the accuracy of traditional
genetic evaluations. Simulated values were compared with Holstein real
data. The average LD between adjacent markers in dairy cattle is related to
the accuracy of genomic selection. Values of 12 between 0.20 and 0.31 have
been reported for different populations (Banos and Coffey, 2010; Habier et
al., 2010). LD values estimated in our simulation were similar to the values
reported in Holstein cattle in North America (Sargolzaei et al., 2008). The

level of decay in LD with respect to the distance between SNPs was also
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similar to the results observed in real populations (Sargolzaei et al., 2008; De

Roos et al., 2008).

Inbreeding values of the simulation were in the range of those reported in
real dairy cattle populations (Kearney et al., 2004; Gonzalez-Recio et al.,
2006; Gonzalez-Recio et al., 2007). Finally, the accuracies of the genetic
evaluations were within the range of values reported for many traits in dairy
cattle populations (Gonzalez-Recio and Alenda, 2005; VanRaden et al.,
2009a).

Accuracy of genomic evaluations

Differences between the pedigree index of traditional genetic evaluation and
the SiresDYD genomic strategy were considered to be part of the simulation
quality control. These results were similar to those reported in North

American Holstein bulls (VanRaden et al., 2009a).

In the female-based strategies, the accuracies achieved using the two-tailed
strategies (TTYD and TTBV) were greater than those obtained using the
pedigree index, even at the smallest population size (1000). Compared to the
SiresDYD strategy, the accuracies for the low- and medium-heritability traits
derived from TTYD were 38% and 55% higher, respectively, but these
increases were at the expense of an increase in the training population size
from 1000 to 5000 animals. Two-tailed selections could be compared with
the use of divergent lines in QTL detection and genome-wide association
studies. Use of extreme samples appears to enhance the ability of selection
procedures to select influential SNPs in genetic association studies. Higher
accuracies reached by two-tailed strategies are consistent with a broiler

mortality study by Long et al. (2009), who achieved similar conclusions.

The TopYD and TopBV strategies required a large number of animals to

produce accuracies similar to those produced by the other strategies, which
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suggests that the TopYD and TopBV strategies were the least informative
and should not be used to create a training population. Lower accuracies of
Top strategies compared to RND have also been found by Ehsani et al.
(2010), who compared different selective genotyping strategies and
concluded that the selection of the best individuals does not provide good

predictions compared with random selection.

Accuracy increased with the reference population size. This phenomenon
has also been observed in previous simulations (Goddard and Hayes, 2009).
In real populations, Lund et al. (2010) reported average reliability (square of
accuracy) increases of between 8% and 11%. These results were obtained
when the number of bulls in the training set was increased from the size of
national training sets to the 15,966 shared genotypes of the
EUROGENOMICS consortium (Holland, Finland, Sweden, Denmark,

France and Germany).

The strategies based on yield deviations were more accurate than those that
used EBVs as the selection criteria, which might be due to the low accuracy
of the EBVs in cows. In the presence of epistasis and dominant effects, the
strategies based on yield deviations might produce better results for the
commercial population if the method can identify these effects. The dairy
cattle industry might be interested in exploiting these effects in commercial
populations, although dominance is not inherited and only part of the

epistatic variance is transmitted to progeny.

Our study was based on a single trait rather than on multiple breeding
objectives. Genetic evaluations are carried out for several traits, but only
some of these traits explain the success of sires in the breeding program; for
example, udder composite is the key trait in sires’ dams (Gonzalez-Recio et
al., 2005). Selection of different breeding goals may be reduced to a

productivity-functionality index selection for 2/3 traits. The extreme
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individuals exhibiting both traits should be genotyped. Nonetheless the
genotyping cost for the least profitable individuals must be carefully

considered

Bias and MSE

The results from this study show that genotyping random females in the
population lead to smaller biased predictions and MSE in the genomic-
assisted evaluations. Genotyping only the top animals of the population,
including sires, may lead to greater bias and MSE. Regression coefficients of
true on genomic breeding values were not equal to 1. However, SiresDYD
coefficients were in the range of similar values reported by other authors
with real data of small dairy cattle populations (Olson et al., 2011). Female
strategies showed low values, which could represent a potential problem in
the application of female base GEBV. To deal with that problem, larger
reference population sizes produce less bias and MSE. The RND strategy
achieved always the smallest bias estimates. It must be pointed out that
strategies that produced the more accurate predictions (TTYD, TTBV) also
showed larger bias than the RND strategy. This is an interesting result for
numerically small populations or when the economic resources for
genotyping are limited. The genotyping strategy would need to focus either
on maximizing accuracy or minimizing bias. The best strategy would depend
on the purpose and organization of the breeding program. For instance, if
comparison between non contemporaneous animals has to be done, the two
tailed strategies may have some drawbacks, but they will maximize the
genetic gain. The two tailed genotyping strategies showed smaller bias and
MSE than the SiresDYD strategies, suggesting that they might be interesting
genotyping designs in numerically small populations In addition Patry and
Ducrocq (2009) detected bias using GS and an underestimation of the
breeding values when they were estimated based on pre-selected genomic

animals. That source of bias does not affect our results as the selection was

- 108 -



Genotyping strategies for genomic selection in small dairy cattle populations

based on traditional breeding values. The estimation methodology and the

model could be a source of bias in this study.

Conclusions

In small cattle populations, Two-tailed selection of females might be an
advantageous strategy to create the training population in a genomic
program, in terms of predictive ability, although at the expense of larger

bias, mainly with small reference population sizes.

Random selection may be advisable for larger populations due to lower bias
estimations. In addition, selection based on yield deviations rather than on
EBVs might be preferable. However, strategies based on genotyping only

the best cows (e.g., sires’ dams) performed poorly.

A combination of two-tailed strategies based on the female population and
the current male genotyping strategy should be considered, although the
method to combine the DYD from sires and the yield deviations of cows

must be developed.

All genotyping strategies considered based on genotyping the best animals
resulted in biased evaluations, but largest bias was found for the “siresDYD”

strategy.
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The use of appropriate methodology is essential for maximizing the benefits
of genomic selection. Advanced statistical methods for genomic selection
were compared using data from Spanish Holsteins; these methods included
SNP regression using Bayesian methods (Bayes-A, Bayesian LASSO), a
machine learning algorithm for genomic prediction and G-BLUP using the
genomic relationship matrix. This study compared the performance of these
methods in terms of their predictive correlations, bias, and mean squared
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Abstract

The aim of this study was to evaluate methods for genomic evaluation of the
Spanish Holstein population as an initial step toward the implementation of
routine genomic evaluations. This study provides a description of the
population structure of progeny tested bulls in Spain at the genomic level
and compares different genomic evaluation methods with regard to accuracy

and bias.

Two Bayesian linear regression models, Bayes-A and Bayesian-LASSO (B-
LASSO), as well as a machine learning algorithm, Random-Boosting (R-
Boost), and BLUP using a realized genomic relationship matrix (G-BLUP),
were compared. Five traits that are currently under selection in the Spanish
Holstein population were used: milk yield, fat yield, protein yield, fat
percentage, and udder depth. In total, genotypes from 1859 progeny tested
bulls were used. The training sets were composed of bulls born before 2005;
including 1601 bulls for production and 1574 bulls for type, whereas the
testing sets contained 258 and 235 bulls born in 2005 or later for production
and type, respectively.

Deregressed proofs (DRP) from the January 2009 Interbull (Uppsala,
Sweden) evaluation were used as the dependent variables for bulls in the
training sets, whereas DRP from the December 2011 DRPs Interbull
evaluation were used to compare genomic predictions with progeny test

results for bulls in the testing set.

Genomic predictions were more accurate than traditional pedigree indices
for predicting future progeny test results of young bulls. The gain in
accuracy, due to inclusion of genomic data varied by trait and ranged from
0.04 to 0.42 Pearson correlation units. Results averaged across traits showed
that B-LASSO had the highest accuracy with an advantage of 0.01, 0.03 and

0.03 points in Pearson correlation compared with R-Boost, Bayes-A, and G-
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BLUP, respectively. The B-LASSO predictions also showed the least bias
(0.02, 0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP,
respectively) as measured by mean difference between genomic predictions
and progeny test results. The R-Boosting algorithm provided genomic
predictions with regression coefficients closer to unity, which is an
alternative measure of bias, for four out of five traits and also resulted in
mean squared errors estimates that were 2%, 10%, and 12% smaller than B-

LASSO, Bayes-A, and G-BLUP, respectively.

The observed prediction accuracy obtained with these methods was within
the range of values expected for a population of similar size, suggesting that
the prediction method and reference population described herein are
appropriate for implementation of routine genome-assisted evaluations in
Spanish dairy cattle. R-Boost is a competitive marker regression
methodology in terms of predictive ability that can accommodate large data

sets.
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Introduction

Genomic selection (GS) is the most promising new technology since
progeny testing for increasing the rate of genetic gain in dairy cattle (Weigel
et al., 2010). It is based on simultaneous selection for thousands of single
nucleotide polymorphisms (SNP). Direct genomic breeding values (DGVs)
can be calculated as the sum of the effects of individual SNPs across the
entire genome or genome-enhanced predictions can be computed by
augmentation or replacing the traditional pedigree relationship matrix with
the realized genomic matrix (Goddard, 2009). Typically, SNP effects are
first estimated in a training or reference population and then used to predict

the breeding values of new selection candidates (Hayes et al., 2009b).

In dairy cattle, GS has caused profound changes in practical breeding
programs, because nearly all young bulls acquired by major artificial-
insemination (Al) centers are now selected based on such evaluations
(Wiggans et al., 2011). In addition, females can be evaluated with cost-
effective genotyping strategies (Weigel et al., 2012), leading to genomic

predictions with a similar reliability to that of young bulls.

National and international genetic evaluations of dairy cattle consider nearly
two dozen phenotypic traits (VanRaden and Sullivan, 2010) and the
inclusion of additional, complex traits is expected within the next decade.
These new traits may include measures of disease resistance and residual
feed intake (Gonzéalez-Recio and Forni, 2011; Pryce et al.,, 2012), and
evaluation may consider crossbreed performance (Toosi et al., 2010), and

genotype by environment interaction effects (Hayes et al., 2009a).

Several different approaches are currently used for estimating genomic
values, and it is important to assess the performance of diverse
methodologies and identify the methods that can provide the greatest

predictive accuracy in a given population. Genomic prediction methods can
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be categorized as: 1) methods that regress phenotypic records on SNP
markers directly, and 2) methods that view genetic values as a function of
the subject and use marker information to build the (co)variance structure
between subjects (De los Campos et al., 2009). The first group of methods
includes several Bayesian regression approaches, such as Bayes-A, Bayes-B
(Meuwissen et al., 2001), and the Bayesian least absolute shrinkage selection
operator (B-LASSO), as described by Park and Casella (2008). These
regression-based methods are usually implemented after traditional BLUP
genetic evaluation of the reference population, and the resulting breeding
value estimates are then used directly or deregressed prior to use as a
dependent variable in the genomic evaluation (VanRaden, 2008). In general,
these methods are computationally time-consuming if the number of SNPs is
large, and this could preclude their utilization in routine evaluation programs
in some countries, despite the fact are used in some countries as The
Netherlands. The second group includes methods that compute a realized
relationship matrix from the markers, such as G-BLUP (VanRaden et al.,
2009b), or single step (Misztal et al., 2009) methods, to augment or replace
the traditional pedigree based relationship matrix. The Single-step method
includes all pedigree and genomic information and avoids the need to
subsequently combine the genomic and traditional breeding values (Aguilar
et al., 2010). The performance of alternative genomic evaluation
methodologies can vary depending on the trait and population structure

(Daetwyler et al., 2010).

In addition to the afore-mentioned approaches, an alternative for dealing
with large data sets and complex interactions between SNPs is machine
learning algorithms (Long et al., 2007). Machine learning methods usually
compare favorably to Bayesian regression models in terms of predictive
ability (e.g., Gonzalez-Recio et al., 2008; Moser et al., 2009; Gonzalez-

Recio and Forni, 2011). Non-parametric or semi-parametric methods of this
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type can be implemented by regressions on markers (e.g., Boosting as in
Gonzélez-Recio et al., 2010)) or by building appropriate (co)variance
structures (e.g., Reproducing Kernel Hilbert Spaces regression, (Gianola and
van Kaam, 2008). Boosting algorithms are among the most appealing
machine learning methods for genomic-prediction problems (Ogutu et al.,
2011), and in a recent study they provided greater predictive ability and
smaller bias than other methods (Gonzalez-Recio et al., 2010). Efficiency of
DGV prediction in dairy cattle can be enhanced by modification to the
algorithm, specifically Random Boosting (R-Boost), as is described in a
companion paper(Gonzalez-Recio et al., 2013.). These modifications allow
prediction of genomic values with SNP regression methods in very large

data sets.

Over the last decade the Spanish breeding program has provided competitive
bulls for the national and international markets due to a robust milk-
recording scheme. Special care has been taken in recording morphologic
traits. GS has revolutionized dairy cattle breeding since 2009. Taking
advantage of this technology is necessary to maintain the program’s

viability.

The objective of this study was to use genotypic and phenotypic data from
the Spanish Holstein population to compare several popular genomic
evaluation methodologies. Two different Bayesian linear regressions (Bayes-
A and B- LASSO), G-BLUP, and a machine learning algorithm (R-Boost)
were compared. Five phenotypic traits were considered, and methods were

evaluated based on predictive correlations, bias, and mean squared error.
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Material and methods
Genotypes

A total of 1859 progeny-tested sires were genotyped. The BovineSNP50.v2
Beadchip (Illumina, San Diego, CA), was used to genotype 54,609 SNPs of
1619 Sires, whereas the remaining 240 sires were genotyped for 54,001
SNPs using the BovineSNP50.v1 Beadchip.

SNPs with a greater than 5% incidence of missing genotypes across
individuals and SNPs with minor allele frequency (MAF) less than 5% were
discarded, leaving only 39,714 SNPs for the analysis. Some animals had
missing genotypes for certain markers; after editing, 0.01% of the SNPs
were missing. Missing genotypes were then imputed with BEAGLE
3.3.2(Browning and Browning, 2009). In a pilot study, known SNP’s were
masked mimicking missing marker rate of the population. Resulted

imputation allele error ratio was 0.008.

Linkage Disequilibrium Estimation

The haplotypes obtained by Beagle prior imputation were used to estimate
the degree of linkage disequilibrium (LD) between SNPs; all genotyped
bulls were used in this calculation. LD, which refers to the non-random
association of alleles between two loci, was measured using the 7 parameter
(Hill and Robertson, 1968). LD can be estimated using other methods, such
as D, D" or measures based on the Chi-squared statistic (Zhao et al., 2005);
however, 7 is the most common measure of LD for biallelic markers and is
less sensitive to the effects of allelic frequency than other methods

(Sargolzaei et al., 2008).
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Phenotypes

The January 2009 de-regressed MACE proofs (DRP) from progeny testing,
as described in Jairath et al. (1998), were used as dependent variables and
included 1859 bulls for production and 1810 for type. The production and
type data were collected from progeny between 1980 and 2008. Sire’s DRP
for milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP),
and udder depth (UD) were used. The estimated heritability based on
traditional genetic evaluations in Spain is 0.28 and 0.30 for production traits

and udder depth, respectively.

Training and Validation Data Sets

Training and validation data sets were generated based on year of birth of the
bulls. A total of 1601 bulls with DRP in January 2009 that were born before
2005 were used for the production training set, whereas 1574 bulls from the
same period were used for the type training set. Bulls born between 2005
and 2007 were used as the validation set; 258 bulls were used for production
traits and 236 were used for type. Effective daughter contributions (EDC)
were used as weighting factors to account for differences in progeny group
size when computing genomic predictions (Jairath et al., 1998). Bulls in the
testing sets had their DGV in December 2011 that were based on 20 or more
EDC. Design of the training and testing sets followed the recommendations
of (Méntysaari et al., 2010); although the recommended four years gap
between training and testing sets was reduced to three years due to small size
of the reference population, thereby leaving more training set bulls maximize

the accuracy of estimated DGV.
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Genomic Evaluation Model

The general structure for the models in linear form is:

y=ul,+> Xg +e
J
where y is the vector of phenotypic records, p is the overall mean, In is a
vector of n ones, Yj is a summation over all markers, gj is the coefficient of
marker j denoting the allele substitution effect, Xj is a design matrix of

genotype codes for the respective marker, and e is a vector of residuals.

The data were analyzed using four different approaches: two models based
on marker regression (Bayes-A and B-LASSO), a method based on a
realized relationship matrix from the markers (G-BLUP) and a machine
learning algorithm (R-Boost), which is described in the companion paper

(Gonzalez-Recio et al., 2013).

Bayes-A

Bayes-A was introduced by (Meuwissen et al., 2001). This method assumes
that marker effects (&) are normally and independently distributed a priori

2 2
N=(0,0, o, . _ . _
as 77, where %/ is an unknown variance associated with marker

j. The prior distribution of the variances of the SNPs was a scaled inverted

2 -2
. e O ~X .
chi-squared distribution, @59 “where ss is the scale parameter and df

represents the degrees of freedom. The parameters ss and df were considered
as hyper-parameters and were fixed for each trait as in Gianola et al. (2009).

An improper prior was assumed for p. Following (Gonzalez-Recio et al.,

_ar-l 2
2009), the residuals, e, were assumed to be distributed as N(O,R=N"0,) ,

where N = {ni} is a diagonal matrix with elements ni representing the

2
corresponding EDC of sire i, and Oc is the residual variance. The prior
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2
distribution for the residual variance ¢ was assumed to be an inverted chi-

squared distribution with hyper-parameters df and ss. The Gibbs sampler
was run for 10,000 cycles, with the first 1,000 cycles of burn-in discarded.
Convergence of the chain was checked by visual inspection, and inferences

on the parameters were made on the mean posterior estimates after burn-in.

Bayesian- LASSO

The Bayesian counterpart of the LASSO model (De los Campos et al., 2009;
Park and Casella, 2008) was also used to estimate SNP coefficients in the
training population. The B-LASSO can be viewed as an optimization
problem, using the sum of the absolute values of the regression coefficients
(LI-norm) as a penalty, in the following regression model (Tibshirani,

1994);

minﬁ {Z(y, - X,B)2 + }\(f)2| B] |} ?

where X is a vector of covariates, B is the corresponding vector of regression
coefficients and A is a smoothing parameter controlling the shrinkage of the

distribution.

The LASSO estimates can be interpreted as the posterior mode in a Bayesian

model considering a double Laplace prior for the coefficient estimates, as:

wp-T15¢""

as put forth by (Park and Casella, 2008), the smoothing parameter A was
assigned a prior distribution gamma (a, b). Values of the hyper-parameters of

the prior distribution were set at 5.0 and 1.0, respectively for convenience.

The Laplace distribution results in stronger shrinkage of marker coefficients

towards zero than Bayes-A. This prior gives each coefficient fj a high
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probability of being near zero while simultaneously giving some coefficients
a chance to have large effect (Yi and Xu, 2008). In practice, this produces a

similar outcome to variable selection (De Los Campos et al., 2010). Flat

prior was assumed for p. The prior distribution for the residual variance O-ez ’
was assumed to be an inverted chi-squared distribution with hyper-
parameters df and ss and was weighted by the number of progeny of each
bull, as detailed for the previous method. A single chain of Gibbs sampling
was run using 25,000 iterations and a burn-in period of 15,000. The
convergence of the chain was checked by visual inspection, and inferences

on the parameters were made on the mean posterior estimates after burn-in.

G-BLUP

The G-BLUP is the most similar to traditional BLUP evaluations of
the four alternatives considered herein. If many QTL exist with effects that
are normally distributed with constant variance, the pedigree relationship
matrix can be replaced with the genomic relationship matrix (G) where the
latter is built from molecular information. Pairs of individuals sharing the
same genotype for a large number of markers will be more similar
genomically, and will have higher values in the corresponding off diagonal
cells of the matrix, as is the case for pairs of related animals in a pedigree-
based relationship matrix. The genomic relationship matrix was computed as
G- /A

2> p(1-p)

description of this model is provided.

, following (VanRaden, 2008), where a more detailed

Random-Boosting

The boosting algorithm is a machine learning technique that combines
several different predictors and a shrinkage factor (Friedman, 2000).

Boosting iteratively adds basis functions, such that each addition further
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reduces the selected loss function (Hastie et al., 2005). In this study, ordinary
least squares was chosen as the basis function, and it was successively
applied to the residuals of the previous iteration in a sequential manner. The
mean squared error (MSE) of prediction was used as the loss function to be
minimized. Details of the algorithm are described in the companion paper
(Gonzalez-Recio et al., 2013). Following their results, v was set to 0.10 for
production traits and 0.20 for type, while the percentage of SNPs selected at
each iteration (mtry) was set to 0.50, 0.10, 0.01, 1.00 and 0.10 for MY, FY,
PY, FP and UD, respectively.

Estimation of Direct Genomic Values

The DGVs for each trait were calculated for individuals in the testing set as:

DGV =pu+X 8,

where p is the overall mean, X, is a matrix of genotypes and f3 jisa

J
vector of posterior means of SNP effects for each of the four methods. For

the R-Boost method, ﬁ ; represents the sum of the slope estimates from the

model in which SNP ;j was selected.

Criterion for Comparisons

The accuracy of the genomic predictions was computed as the Pearson
correlation between the predicted DGV of bulls in the testing set and their
December 2011 DRP. Sire - maternal grandsire - maternal great grand sire
index for sires in the testing set was used as a benchmark. It was calculated
as 50% of the sires DRP, 25% of the maternal grand sires DRP and 12.5% of
the maternal great-grand sires DRP. For simplicity we refer to these values
as Sire-Pedigree Index (Sire-PI). Estimated accuracies were adjusted by

EDC following the recommendations of (Méantysaari et al., 2010).
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The average difference between 2011 DRP and the predicted DGVs in the
testing population provided a measure of bias in the genomic predictions;
this bias estimate was standardized. Coefficients of regression of realized
December 2011 DRP on estimated DGV were also calculated, because this
parameter is also commonly used as a measure of prediction bias in genomic
evaluations (Méntysaari et al., 2010). Finally, MSE of prediction, which is

linked to bias, slope and accuracy, was also estimated.

Results and discussion
Summary of genomic data

The distribution of genotyped bulls, by year of birth, is shown in Figure 3.1.
Most of the bulls were born after 1990, thereby providing a recent reference
population for prediction of genomic values of young animals. It is well
known that GS results in higher responses for the generations closer to the

reference population (Goddard, 2009).

After filtering, the distribution of MAF was nearly uniform with a mean of
0.28 (Figure 3.2). The average distance between adjacent SNPs was 0.06
Mb, and SNPs had average heterozygosity of 0.29. Linkage disequilibrium,
between adjacent SNPs, measured as 12, was 0.24. All values were in the
range reported previously values for other Holstein populations (Banos and

Coffey, 2010; Habier et al., 2010; Wiggans et al., 2009a).
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Figure 3.1. Number of genotyped bulls by year of birth.
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Figure 3.2. Distribution of minor allele frequencies (MAF) of the SNPs after
quality control.

The Figure 3.3 shows the average r* between SNP pairs plotted against the
map distance of up to 1 Mb and shows the standard deviations for the
average r2 values across all 30 chromosomes. Average r’ decreased
exponentially with increasing distance between SNPs and was equal to 0.40,
0.24, 0.16 and 0.08 at distances of 0.01, 0.05, 0.1 and 1 Mb, respectively.
The level of decay in LD with respect to the distance between SNPs was also
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similar to results from other populations (Habier et al., 2010; de Roos et al.,

2009).
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Figure 3.3. Average linkage disequilibrium (measured as r2) and confidence
interval (estimated by R package gplots) between syntenic markers with respect
to their physical distance.

Accuracy

Traditional Sire-PI accuracies ranged from 0.37 to 0.51 (Table 3.1).
Predicted DGV showed higher accuracies than Sire-Pls, regardless of the
genomic prediction model, with an average increment of 49%, ranging from
9% for UD to 83% for FP. Similar results have been reported previously in
other Holstein populations (Moser et al., 2010; VanRaden et al., 2009b),
indicating that selection of young animals based on genomic predictions is

preferable to selection based on traditional pedigree information.

Among methods, B-LASSO provided the highest Pearson correlations for
MY (0.60), FY (0.61) and PY (0.57), as well as the highest Pearson
correlation averaged across traits. Bayes-A provided greater accuracy for
UD (0.56) and was equivalent in accuracy to B-LASSO for FY (0.61). R-
Boost achieved the greatest Pearson correlation for FP (0.81), whereas G-

BLUP achieved the same accuracy as B-LASSO for PY (0.57). In general,
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differences in accuracy between methods were small for MY, FY, PY and

UD but larger differences were found for FP. For instance, R-Boost

outperformed GBLUP by 0.19 units of Pearson correlation for FP. Pearson

correlation coefficients averaged across traits were 0.61, 0.60, 0.58, and 0.58

for B-LASSO, R-Boost, Bayes-A, and G-BLUP, respectively.

Table 3.1. Accuracy, standardized bias in means, bias in regression coefficients
and mean squared error (MSE) of genomic predictions for different evaluation
methodologies and five traits of economic interest in Spanish dairy cattle

Protein Fat Udder
Milk Yield Fat Yield Yield Percentage Depth
Methods' MY) (FY) (PY) (FP) (UD)
Accuracy
Sire-PI 0.37 0.37 0.40 0.39 0.51
B- LASSO 0.60 0.61 0.57 0.74 0.55
Bayes-A 0.55 0.61 0.55 0.65 0.56
R-Boost 0.54 0.60 0.50 0.81 0.54
G-BLUP 0.58 0.59 0.57 0.62 0.55
Bias in means
B- LASSO 0.04 -0.05 0.05 0.01 -0.06
Bayes-A 0.07 -0.07 0.02 -0.04 -0.11
R-Boost -0.01 -0.09 -0.02 0.01 -0.22
G- BLUP -0.19 -0.15 -0.16 0.14 0.06
Bias in
Regression
coefficients
B- LASSO 0.73 0.80 0.70 1.06 0.63
Bayes-A 0.58 0.78 0.67 0.79 0.69
R-Boost 0.87 0.99 0.80 1.19 0.82
G- BLUP 0.71 0.80 0.70 1.02 0.64
MSE
B- LASSO 239992 398 206 0.03 0.95
Bayes-A 289122 404 215 0.04 0.90
R-Boost 247593 395 216 0.03 0.92
G- BLUP 269619 423 219 0.04 0.95

In bold: The preferred method within trait and comparison criteria.

'Methods: Sire-PI (Traditional pedigree index), B- LASSO (Bayesian LASSO), Bayes-A, R-Boost
(Random Boosting) and G-BLUP
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In a previous study based on simulated and growth data in mice, Usai et al.
(2009) showed slightly greater accuracy with B-LASSO compared with G-
BLUP and Bayes-A. Cleveland et al. (2010) reported a similar predictive
ability for B-LASSO and two variants of Bayes-A in simulated data;
however, the authors observed better performance of B-LASSO for traits
that were regulated by many QTL with small effects. Legarra et al. (2011)
reported slightly greater accuracies for B-LASSO than G-BLUP, but slightly
better for B-LASSO. G-BLUP on real data showed reliabilities of 63%
compared to 32% from pedigree index on the combined trait Net Merit
(VanRaden, 2008). Others found higher or similar accuracies using GBLUP
than using Bayes B (Luan et al., 2009; Mrode et al., 2010).

There were no relevant differences between R-Boost and the additive models
based on marker regression, except for FP. Although machine learning
techniques are expected to accommodate cryptic relationships in the data, the
use of dependent variables that represent previously computed (additive,
linear and smoothed), sire EBVs could mask such differences. R-Boost
seems to provide some advantages over Bayesian regression when a small
number of QTL regulate the trait under purely additive regulation
(Gonzalez-Recio and Forni, 2011). In the present study, genomic predictions
from R-Boost were more accurate for traits controlled by single genes that
explain a large proportion of the genetic variance (e.g., DGAT1 for FP).
Note that differences exist in accuracy for the R-Boost method between the
results of this manuscript and the companion paper (Gonzalez-Recio et al.,
2013), presumably due to the adjustment for number of progeny in the
present paper as suggested by (Méntysaari et al., 2010).

Bias in the Mean

The DGV of bulls in the testing set showed an average deviation over the

realized DRP of 0.08 genetic SD across methods and traits, with averages
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ranging from 0.05 (FP) to 0.11 (UD). Increasing size of the reference
population may alleviate this problem (Liu et al., 2011; Lund et al., 2011).
Standardized bias showed greater differences between methods than Pearson
correlations. R-Boost resulted in nearly unbiased predictions for MY and FP
and also produced the least bias for PY, whereas B-LASSO, produced the
least bias in predictions for FY, FP and UD. Bayes-A showed a similar bias
to R-Boost for PY. G-BLUP tended to provide, more biased predictions for
all traits, with the exception of UD. The Methods with greater Pearson
correlation can also produce more biased predictions; so both accuracy and
bias should be considered when deciding which method has greater
predictive ability. Therefore, MSE may be a more appropriate comparison

criterion than the Pearson correlation, as it combines accuracy and bias.

When the genomic predictions of young bulls are compared with highly
reliable, progeny-tested bulls, biases from genomic predictions must be
taken into account. In addition, genomic predictions of future performance
are expected to be biased when only genomically pre-selected bulls are
allowed to produce offspring (Patry and Ducrocq, 2011). This was not the
case for bulls included in the present study, as they were genotyped after

selection.

Bias in Regression Coefficients

The coefficients of regressing realized DRP on estimated DGV are
commonly used as a measure of bias in genomic evaluations. The expected
value for this slope coefficient is unity if evaluations predict the actual
magnitude of differences between bulls, if the genotyped young bulls are a
representative sample of the bulls in the population. However, the genotyped
young bulls are typically pre-selected by the Al centers based on their EBV
or Sire-PI (Méntysaari et al., 2010). In our study, regression coefficients

ranged between 0.58 for Bayes-A (MY) and 1.19 for the R-Boost (FP). R-
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Boost provided slope coefficient closest to unity for four of the five traits
(0.87 for MY, 0.99 for FY, 0.80 for PY and 0.82 for UD). Bayes-A provided
the smallest coefficients for all traits, except UD, whereas B-LASSO and

GBLUP produced similar coefficients that exceeded unity only for FP.

These Regression coefficients were within the range reported in other studies
in similar dairy cattle populations (Olson et al., 2011; Tsuruta et al., 2011).
Some authors have suggested inclusion of a polygenic effect to address this
problem (Liu et al., 2011), because this modification could reduce the
overestimation of DGV. Low coefficients of regression for MY, PY and UD,
could be possibly explained by higher selection on these traits compared

with FY and FP.

MSE

The MSE can be viewed as a risk function that incorporates both the
predictive variance and bias of an estimator. B-LASSO and R-Boost
provided smallest MSE for all traits except UD, where Bayes-A
outperformed the other methods. For instance, regarding MY Bayes-A
showed 20% and 17% greater MSE than B-LASSO and R-Boost,
respectively. G-BLUP also showed greater MSE (from 5 to 12%) for MY
and FY, as compared with B-LASSO and R-Boost. R-Boost was the
preferred method across traits in terms of MSE providing the smallest MSE

on average, followed by B-LASSO, Bayes-A, and G-BLUP respectively.

In a previous study, (Verbyla et al., 2009) showed similar differences in
MSE between Bayesian regression models and G-BLUP. Their study
reported larger MSE than the present results for the Spanish population,
perhaps due to their smaller reference population (1098 progeny tested
bulls). As stated previously, MSE reflects both bias and accuracy, but, it is

often ignored when comparing genomic evaluation methods.
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Conclusions

Implementation of GS in the Spanish Holstein breeding program will
improve selection efficiency for both Al centers and commercial farms, and
identification of superior animals at young ages will be more accurate than

was previously believed possible.

The descriptors of the genomic structure of the population used in this study
showed that the Spanish population is similar to other Holstein dairy cattle
populations, as expected. Based on this similarity, genomic evaluations of
genotyped animals for recorded traits included in the milk recording scheme

should be feasible.

Different prediction methodologies, including non-parametric, implemented
in this study showed similar predictive ability, and the optimal method was
sometimes trait dependent. In general B-LASSO was preferable in terms of
Pearson correlations, and R-Boost provided regression coefficient estimates
closest to unity. Both methods outperformed Bayes-A and G-BLUP in terms
of predicted MSE. Methods that provided higher Pearson correlations also
showed large biases, so MSE may be a more appropriate comparison
criterion than Pearson correlations. Marker regression methods outperformed
G-BLUP in terms of MSE due to larger bias in GBLUP estimates. Lastly the
R-Boost method may provide computational advantages over B-LASSO and

Bayes-A

Future collaborations with the EUROGENOMICS consortium, which has a
reference population of more than over 20,000 progeny-tested bulls, is
expected to substantially increase the accuracy of genomic predictions for
Spanish Holsteins. Here the R-Boost method is expected to show some

computationally advantages over B-LASSO and Bayes-A
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The expectations raised by genomic selection have caused that many more
individuals have already available genotypes. The different consortia created
worldwide have provided genetic evaluation units with several thousands of
genotyped individuals. This study proposes a machine-learning algorithm to
implement routine genome-assisted evaluation in a feasible manner with

reasonable computation times, with no impaired predictive ability.

- 143 -



- 144 -



The gradient boosting algorithm and random Boosting for genome-assisted evaluation in large data sets

Abstract

In the next few years, with the advent of high density SNPs arrays and
genome sequencing, genomic evaluation methods will need to deal with a
large number of genetic variants and an increasing sample size. The boosting
algorithm is a machine learning technique that may alleviate the drawbacks
of dealing with such large data sets. This algorithm combines different
predictors in a sequential manner with some shrinkage on them, each
predictor is applied consecutively to the residuals from the committee
formed by the previous ones, to form a final prediction based on some subset
of covariates. Here, a detailed description is provided, and examples using
toy data are included. A modification of the algorithm called “random
boosting” was proposed to increase the predictive ability and speed up
computation time of genome- assisted evaluation in large data sets. The
random boosting uses a random selection of markers to add a subsequent
weak learner to the predictive model. These modifications were applied to a
real data set composed by 1797 bulls genotyped for 39,714 SNPs. De-
regressed proofs of four yield traits and one type trait from January 2009
routine evaluations were used as dependent variables. A 2-fold cross
validation scenario was implemented. Sires born before 2005 were used as a
training sample (1576 and 1562 for production and type traits, respectively),
whereas younger sires were used as a testing sample to evaluate predictive
ability of the algorithm on yet to be observed phenotypes. Comparison with
the original algorithm was provided. The predictive ability of the algorithm
was measured as Pearson correlation between observed and predicted
responses. Further, estimated bias was computed as the average difference

between observed and predicted phenotype.

The results showed that the modification of the original boosting algorithm
can be run in 1% of the time used with the original algorithm, and with

negligible differences in accuracy and bias. This modification may be used
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to speed up the calculation of genome-assisted evaluation in large data sets

such us those obtained from consortia.
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Introduction

In the last years, several methods have been proposed to incorporate high
density marker information in the genetic evaluations (Aguilar et al., 2010;
Gianola et al., 2006; Gonzalez-Recio et al., 2008; Meuwissen et al., 2001).
These methods are based on either linear regression on the marker effects
(e.g. Bayes B, Bayesian LASSO) or in genomic covariance between
genotyped individuals (e.g. GBLUP, Single Step GBLUP). These methods
are supposed to deal with the curse of dimensionality problem, although
some concerns have been raised about their convenience to analyze high-
dimensional data (Gianola et al., 2009). Non-parametric model from the
machine learning repository have been proposed as an alternative in
genome—assisted evaluations because they are able to extract hidden
relationships from large, noisy and redundant data and do not follow a
particular parametric design. For instances, reproducing kernel Hilbert
spaces (Gonzalez-Recio et al., 2008), Radial basis functions (Long et al.,
2010), random forest (Gonzalez-Recio and Forni, 2011) neural networks
(Gianola et al., 2011) or the boosting algorithm (Gonzalez-Recio et al.,
2010) have already been implemented in this context. In general, previous
results showed that non-parametric methods have similar or better predictive
accuracy than regression on SNPs and genomic relationship matrices.
Further, machine-learning methods are attractive and flexible for the
implementation of genome-assisted evaluation using high-density SNP
arrays. SNP chips include more and more SNPs, and sequence data may
soon be available increasing the computation requirements. Thus, new
strategies need to be developed to deal with reference population samples
with a larger number of genotyped individuals with chips including an

increasing number of SNPs.

The gradient boosting algorithm (BOOST) is an interesting alternative in a

genome-assisted evaluation context when many more animals and markers
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are genotyped or sequenced, because it performs variable selection, uses
simple regression models in an additive fashion and is computationally fast
and easy. BOOST is a machine learning algorithm classified as an ensemble
method. It was first proposed by Freund and Schapire (1996) for
classification problems and was known as AdaBoost. Since then, it has been
utilizes in many fields showing similar or higher predictive accuracy than
traditional methods both in classification and regression problems. The
boosting algorithm has been previously used in the genome wide prediction
of genetic merit and disease susceptibility in animal breeding ( Gonzalez-
Recio et al., 2010; Gonzélez-Recio and Forni, 2011), and also showed
similar or higher accuracy than other methods such as Bayes A or Bayesian
LASSO. The algorithm uses a reference data set to find a predictive model
which, given some genotype markers (e.g. SNP), predicts the most likely
genetic merit for individuals yet to be observed. It does not assume any
particular mode of inheritance or parametric model, and as commented
above, is suitable to analyze very high-dimensional, redundant and fuzzy

data like high-density SNP chips.

Nonetheless, BOOST, just as any other method used in a genome-assisted
evaluation context, has yet to deal with the estimation of regression equation
on markers when several thousand genotyped animals are used in the
reference population (VanRaden et al., 2011), such as in the case of the
EuroGenomics consortium in which more than 22,000 genotypes are already
available as a reference population. These methods need to be adapted or
modified to be implemented in the new era of genomic evaluations with
many more genotypes and phenotypes, to predict genetic merit of young

sires and cows in an accurate manner with minimum computer requirements.

The objective of this article is to provide a comprehensive description of the

boosting algorithm in a genome-assisted genetic evaluation context, and to
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propose modifications thereof to deal with the larger number of genotypes

and phenotypes in genomic evaluations.

The manuscript is organized as follows: first a brief description of ensemble
methods is provided, then the gradient boosting algorithm is detailed in a
genome-assisted evaluation context. The implementation of gradient
boosting is illustrated in a toy example using two different base regression
functions (ordinary least square and reproducing kernel Hilbert space
regression). A modification of the algorithm is proposed for its
implementation in the genome-assisted evaluation with many more
phenotypes and genotypes. Finally, this modification is applied to a real data
set and compared to the original BOOST. Comparison with other methods
commonly used in this context is provided in a companion paper (Jiménez-

Montero et al., 2013) in a real genomic evaluation problem.

Methods
Brief description of ensemble methods

Ensemble methods are a linear combination of some models instead of using
a single fit of the model (Hastie et al., 2005; Seni and Elder, 2010), that can

be expressed in the form:

y=¢,+ch(y;X)+c,h(y;X)+ ...+ ¢, h, (y;X) +...+ ¢, hy, (y;X) + €
M

y=Co+ 2.Cuhn(y:X)+e
m=1

Where h,(y;X) (me 1. |v|}) is some sort of model or function implemented
on the phenotypes and genotypes in some specified manner, ¢, is the
population mean and c, (me (... M}) are the coefficients or weights for each
model. Each model h_(y;x)is usually called ‘weak learner’ because they are

simple models that are supposed to perform slightly better than random
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guess. It is important to point out that little improvement would be gained
with a strong learner and computation time would increase significantly. The
ensemble methods form a “committee” of predictors with potentially greater
predictive ability than that of any of the individual predictors. They became
popular as a relatively simple device to improve the predictive performance
of a base procedure. Random Forest, Bagging or boosting are examples of
ensemble methods. They have been used in different fields and may be

implemented in studies using large amount of genomic information.

Gradient boosting

Gradient boosting is considered as an ensemble method (Hastie et al., 2005).
This algorithm combines different predictors in a sequential manner with
some shrinkage on them (Friedman, 2000). It also performs variable

selection.

Gradient boosting, as an ensemble method, may be described as follows:

M
y=p+y vh (y:X)+e

m=1

Each predictor (h_(y;X) for me (1,M)) is added in a sequential manner, and is

applied consecutively to the residuals from the committee formed by the
previous ones, weighted by ci=v. This algorithm can be calculated using

importance sampling learning ensembles as described next:

(Initialization): Given data (y,x), let the prediction of phenotypes be F =y.

Then, for m in {1 to M}, with M being large, calculate the loss function (L)

for (yi’Fm—l(Xi) +h(y;X;, pm))
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where p _is the SNP (only one SNP is selected at each iteration) that

minimizes ZH;L(y-,F L)+ h(Y;X, p) at iteration m; h(y;x,p,) is the
i=1

prediction of the observation using learner h(-) on SNP p . Selection of SNP

p, may be based on the minimization of the loss function L(-) in the training

set or in a tuning set previously put aside in an n-fold cross-validation

scenario.

Next, wupdate the predictions at iteration m in the form
Fm(xi):mel(xi)+v'h(yi;xi’pm)With v e(0,1)being some shrinkage factor, e.g.

v=0.01.

Each subsequent model is trained on the residuals of the previous one, which
are actually residual estimates (&). These & are expected to be identical and

independently distributed ase~ N(0, Gezm)’ where o’ is the residual variance
for model m. Therefore, the larger M the smallergg . This means that for

larger m, the contribution of the selected SNP at m is expected to be smaller.
The shrinkage parameter v aims to control this trade off between number of
models and importance of the SNPs. The smaller v is, the smaller explained
variance is subtracted at each iteration, and therefore new (or the same)

SNPs are allowed to explain the remaining residual variance.

Note that a large variety of learners (h (y:X)) and loss functions
(L(y;,F,(x,))) may be proposed, each of them leading to different boosting

model. For instances, classification and regression trees, generalized least
squares regression or non-parametric kernel regression may be used as weak
learners. A quadratic error term, the exponential L; loss function, the Gini
index or the Huber loss function are some examples of loss functions that

may be implemented within the algorithm.
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The choice of the number of iterations, M, is a model comparison problem
which may be overcome in many different ways (Friedman, 2000; Gonzalez-
Recio et al., 2010; Hastie et al., 2005). This parameter may control the
complexity of the ensemble and the overfitting caused in the training set. A
simple manner of choosing M is stopping the algorithm when the decrease in
error rate or mean squared error in a tuning set is not relevant during a large
enough number of iterations (e.g. 100). Once the coefficient and the weak
learners have been estimated, predictions for yet-to-be observed records may

be calculated as:
A M ~
9i =F,(x)= ,[H'Zth(Xi)'

More details on the gradient boosting can be found in Freund and Schapire,
(1996), (Friedman, 2000) and its implementation on genomic prediction in

(Gonzalez-Recio et al. (2010).

Following below is a toy data example to describe the procedure to compute
predicted genomic merit of genotyped individuals using two different weak

learners: ordinary least square and RKHS regression.

Illustrations

Let y=[21.08 16.13 1841 20.50 12.95] be the vector of observed
phenotypes for »=5 individuals. Each individual is genotyped for p=3 SNPs
codified as 0, 1 or 2 if they share 0, 1 or 2 copies of the most frequent allele

in the population (as an arbitrary coding example). Let the corresponding X

matrix be:

X

Il
N DO NN
N == O
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The mean estimate y for trait y is 17.81. The algorithm is initialized

setting F, =17.81 for all individuals. Note that other environmental effects

may be included to adjust the phenotype. Let the loss function be the mean
squared error, and the shrinkage coefficient v=0.9. This value is used only

for illustration purpose, and a smaller value (e.g. v=0.10) is usually desired.

Hllustration 1: ordinary least square

Suppose that the weak learner ( h(-)) is the ordinary least squares regression
and the mean squared error (MSE) was assumed as loss function L(:). The
ensemble will be constructed adding the results of several of these

regressions.

The first model, m=1, is estimated as follows:

The heuristic search begins by trying p=3 models in the form
y=F,+h(y;X,,9)+e, withse {1,2, p=3}

In this case h(-) is a linear regression on SNPs, and the model becomes

y=F, +a +bX, +e, where X_ is the column vector of the genotype codes

for SNP s.

For simplicity, here the model was solved by least squares estimates,
although other estimators like Bayesian regression may be used. The

solutions for each SNP would be:

Fors=1: § =-1.137 and b, =1.137 with MSE=8.44;
For s=2: 4 =0.593 and b, =-0.370with MSE=8.87;

For s=3: 4 =2.336 and b, =-1.946with MSE=11.07;
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Hence, SNP s=1 is selected because it was the one minimizing the MSE. The
new estimates are F, =y+vh(y,X), With h(y,X)=-1.137+1.137x . The

prediction for animal i becomes now:

§,=y+V& +Vx; witha =-1.137, b, =1.137 and x, being the genotype

code of individual i for SNP 1.

Note that, again for simplicity, the SNP minimizing the MSE in the same
data set was selected and used to estimate ¢ and b. In a real scenario, a

tuning set should be kept apart and the selected SNP could be the one

minimizing the MSE in the tuning set with 4 and b estimated in the training

set.

A second model m=2 is then added to the ensemble as:

y= If1 +h,(y;X,,5)+e; withse {12, p=3}. The model may be written as
r=y- If1 =h,(y; X,,9) + &, and the dependent variable in the second model

are the residuals obtained from m=1:

327 ] [21.08] [17.81+0.9-(=1.137)+0.9-1.137-1 |

—-0.66 16.13 17.81+0.9-(-1.137)+0.9-1.137-0
-043|=|18.41|-|17.81+0.9-(-1.137)+0.9-1.137 -2

269 | |20.50| |17.81+0.9-(~1.137)+0.9-1.137-1
—4.87] [12.95] [17.81+0.9-(~1.137)+0.9-1.137 1 |

r - y - [fl
The heuristic search begins again by trying p=3 models in the form
r =h(y;X,,5) +e withse {1,2, p=3}

As before h(-) is a linear regression on SNPs, and the model for the heuristic

search is then
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r,=a, +b,X, +e, where X_ is the column vector of the genotype codes for

SNP s.

The solutions for each SNP would be:

Fors=1: &, =-0.114 and b, =0.114with MSE=8.44;
For s=2: &, =-0.431 and b, =0.269with MSE=8.40;

For s=3: é.z =2.336 and 62 =-1.946with MSE=6.33;

The SNP s=3 is selected in m=2 because it was the one minimizing the MSE.
The new estimates are IA:2 = IA:1 Jrvﬁ2 (y,X), with ﬁz(y,X) =2.336-1.946x ;-

The prediction model for animal i becomes now:

V =y +V4 -|-v6‘)(i)1-|-vé\2 +v62xi’3; Wi'[hé2 =2.336, 62 =-1.946 and X5 being the

genotype code of individual 7 for SNP 3.

Subsequently, more models are added by selecting one SNP at each model m

after the heuristic search is done on residuals r_, =y—F,_, until MSE

1
converges. In this case, the algorithm converged at the second decimal

(MSE=5.71) for M=14, and final predictions were

yi:y+vé,+vﬁ,>q,1+v32+v62>q,3+...+vém+v6m>q’m+...+véM +vk3Mxi,M. The SNP
selected at each iteration were [1,3,3,2,1,2,1,3,2,1,2,1,2,1]. The predicted

genomic merits of individuals in the toy data set were:

[21.08]

16.13
§=F, =184l

16.73
11673
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For generalization, it can be shown that the non-parametric genomic merit of

any individual using ordinary least square regression as weak learner is

y=7+wa+ﬁx§+@+@x$+m+@ﬁﬁ#%m+éM+mx%ywm@mmﬂBm
being the intercept and slope coefficient estimates in model m, and Xq is the

vector for the corresponding genotypes codes for SNP selected at model m.

Here, the intercept estimates can be added to compute a global intercept (&)

that may be interpreted as a bias corrector.
& =v(@ +a,+..+4a,+..+4a,)

Then, SNP contribution to the genomic merit (BTX_) of the individual may be

expressed as:

"h;x = vEﬁx

A

whereB:(tSl, b,..., bm,,,,,BM) is a row vector of M dimensions containing the

slope estimates at each model me {1,..,M}, x :(x.l,x.p___,x.j,___,x‘p)(is the
column vector with the genotype codes of the individual for the p SNPs, and
A is an indicator matrix (M x p) with each row me {l,..,M} indicating the
SNP selected in model m. Each row m contains zero for those positions
where the corresponding SNP is not included in the model m, and ‘1’ in the

position of the SNP included in model m. Hence, the non-parametric

prediction of the genomic breeding value of a given individual would be:

yegbv = éT + bTX4
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The global coefficient estimate (BT) for SNP ; is the sum of the slope

M
br=v E g D
=1

, where <1 is an indicator function equal to 1 if the SNP is selected at model

estimates in the model in which the SNP ;j was selected, as

m and 0 otherwise, and Bm is the slope estimate from model m.

It is clear that D is a row vector containing the global coefficient estimates

for each SNP in the formhr =vbi= F(E]‘Tl' Brgrve By one By }

It must be pointed out that although each Bm is calculated from a linear
function, the sum of all Bm lacks of a linear interpretation as each of them is
calculated from previously corrected phenotypes.

Predictions of new genomic breeding values for young genotyped

individuals can be easily calculated using the regression equations obtained

as described above.

Hllustration 2: kernel regression or RKHS

Assume now that the weak learner (h(-)) is a non-parametric regression

(kernel or RKHS) as described in Kimeldorf and Wahba, (1971):

K'y = [K'K+ iKle

b

wherey is the vector of phenotypes, K = {k, j}is a nxn matrix of kernels, A is

a smoothing parameter that may be interpreted as the variance explained by

the kernel matrix, and © = L. &g,00 00 &0 v @1is a column vector of # non-

parametric coefficients.

Following the reparametrization I in (De los Campos et al., 2009), the model

equation can be written as follows:
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-
[E.+ T I]q:r =y

. 2 . . . .
, witho_ being some residual variance. For equivalences

between RKHS and BLUP see (De los Campos et al., 2009). Both the
residual variance and A must be estimated in a RKHS scenario. Maximum
likelihood or Bayesian estimates from these parameters may be obtained
using standard procedures. Further, the model may be simplified using a
kernel regression model as that described in Gianola et al. (2006) without
needing the estimation of these parameters, using the Nadaraya-Watson

estimator (Nadaraya, 1964; Watson, 1964). Here, for convenience, a RKHS

model is proposed but the ratio between GZ and 4 was assumed equal to 1.

Then, a kernel matrix must be constructed for each SNP. Each matrix

(K*®,se{1,2, p=3}) must be semi-positive definite and contains the set of
quantitative values representing genomic similarities between pairs of

individuals (kfj) at a given locus s. A large variety of kernels have proved

to be useful for genomic data (Gonzalez-Recio et al., 2009, 2008; Schaid,
2010). Here, again for simplicity, the allele match kernel was used as
illustration, the kernel score assays the number of common alleles between
the locus sof two individuals i and j. The score is 4 if the genotypes of the
individuals are the same; 2 if one is a heterozygote and the other is a
homozygote, and O if they don’t share any common allele (i.e. molecular

relationship).

Therefore, the matrix K*° = { k. } for each SNP se {1,2, p=23} would be:

4 2 2 4 4 4 4 0 4 4 4 220 0
2 40 2 2 4 4 0 4 4 2 4 4 2 2
K'={2 0 4 2 2PK*=|0 0 4 0 0°K*=[2 4 4 2 2
4 2 2 4 4 4 4 0 4 4 022 4 4
4 2 2 4 4 4 4 0 4 4 0 2 2 4 4
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As described in Gianola et al. (2006), Gonzalez-Recio et al. (2008) and De
los Campos et al. (2009), the predicted genomic breeding merit of the
individuals may be computed as ¥ = K&, where @ are the non-parametric
coefficient estimates, and K* is an mxn kernel matrix containing the
genomic similarities at a given locus s between the n individuals with
records and the m individuals whose genomic merit we aim to predict. For
instance, if we aim to predict the genomic merit of the individuals with

records K =K?®, otherwise Ks*:{ngk}With k®; being the genomic

similarity between each individual without phenotype (i) and those with

phenotypes (7).

Coming back to the toy data set, the predictions for yet-to-be observed

records may be calculated as:

M
i :ﬁm(xi):y+zvﬁm(xi). In this case, the weak learner is a RKHS
m=1

regression as described above (IE™ + e =y ),

As before,y =[21.08 16.13 18.41 20.50 12.95] was the vector of observed

phenotypes for »n=5 individuals. And the algorithm was initialized

setting F, =17.81 for all individuals. Again, assume that the loss function is

the mean squared error, and the shrinkage coefficient v=0.9.
The first model, m=1, is estimated as follows:

The heuristic search begins by trying p=3 models in the form
y=F,+h(y;K®,s)+e, withse {1,2, p=3}

With h() being the RKHS with K ® as kernel matrix. The model is
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v=>F5L+Kwa+e  whereK®is the kernel matrix corresponding to locus, and

€ is the vector of non parametric coefficients for model m=1.
The solutions for each SNP would be:

For s=1:6; =[3.00 — 045 0.00 242 —513lwith a mean squared error
(MSE)=8.29;

For s=2: @ =[3.41 — 154 012 2.83 —473]lwith a mean squared error
(MSE)=8.88;

For s=3:(; =[085 —1.38 0.8% 377 - 379 with a mean squared error
(MSE)=6.40:

The SNP s=3 has produced the smallest MSE and was therefore selected in
this case. The new estimates are F =y+vh(y,K?), withhy ¥, K3} = K8
The prediction for animal i now become:

Y=Y+ vki_o}l; with v being the shrinkage coefficient,
@y =[085 - 1.38 089 377 —379and k; ={k’} containing the vector
with the genomic similarities between the individual 7 and each individual

with record at locus 3.

As for the OLS learner, the SNP minimizing the MSE in the same data set as
the one used to estimate a and b was selected, but a tuning set may be used

as stated previously.

A second model m=2 is then added to the ensemble as:

y=F +h,(y;X,,9) +e; withse {1,2, p=3}. The model may be written as
r=y- If1 =h,(y; X,,9) + &, and the dependent variable in the second model

are the residuals obtained from m=1:
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[1.09 ] [21.08] [17.81+0.9-2.42

-1.41 16.13 17.81+0.9-(-0.30)
0.86 |=|18.41|-|17.81+0.9-(-0.30)

3.66 | [20.50| |17.81+0.9-(~1.08)
-390 |12.95] |17.8140.9-(~1.08)]

r = y - (-F o + Fi )
The heuristic search begins again by trying p=3 models in the form

ry =h:y: K% s+ e =Koy + e withse {1,2,p=3}

The solutions for each SNP would be:

For s=1: €z =[0.87 — 036 0.10 344 —412lwith a mean squared error
(MSE)=5.93:

For s=2: @ =[122 —128 Q.17 379 —377lwith a mean squared error
(MSE)=6.34:

For s=3:fz = [0:31 —1.25 1.02 382 -374with a mean squared error
(MSE)=6.25:

The SNP s=1 is selected in m=2 because it was the one minimizing the MSE.
The new estimates are F, =F +vh(y,K'), with Bafy.K'3=RKG . The
prediction for animal i now become:

§=y+wkd +vk G, with @ =[0.87 —0.36 0.10 344 - 412land
ki.={k' } containing the vector with the genomic similarities between the
individual i and each individual with record at locus 1.

As described previously, subsequent models are added to the residuals of the

previous ensemble until a convergence criterion is reached. In this case, the

algorithm converged at the second decimal in the MSE (=5.71) for M=7. The
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SNP selected at each iteration were [3,1,3,1,1,3,1]. The predicted genomic

merits of individuals in the toy data set were:

[21.08]

16.16
F. =|18.38|

16.72
116.72

<
Il

For generalization, it can be shown that the non-parametric genomic merit of
any individual using RKHS as weak learner is

M

F=v4o(kia, + ka4 + kPG, + o+ Ky =T o Z kG,
mE1 ,

withé-being the non parametric coefficient estimates at model m, and

k’» ={k’} the vector containing the genomic similarities between the

individual i and each individual with record at the locus selected at model m.
Hence, if the &» are estimated at each model using the residuals of the
previous model they will differ between models, whereas the K matrix
remains constant. Hence, if the phenotype of a new individual has to be
predicted, the non-parametric coefficient estimates and the pairs of the
genomic similarity between it and the individuals with observation should be
computed once and electronically stored. A single text file may be stored for
each individual containing the genomic similarity at each marker position
with each individual in the reference population. The algorithm does not
need to be run again, and the predictive equations can be computed in a

straightforward manner, as with linear regression models.

Modification of the boosting algorithm

Randomboosting. The purpose of this modification is basically to speed up

the algorithm for large data sets or too time consuming learners. We propose
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to sample mtry covariates at random out of the p SNPs at each iteration, and

select the SNP among the mtry that minimizes the given loss function.

Ty
Therefore, computation time may be reduced in the order of ( ® )
regarding the original algorithm, as only a small percentage of SNPs are
tested for minimization of the loss function at each iteration. The parameter
mtry may be tuned in the Random boosting modification. Studies of similar
strategies used in the Random Forest algorithm showed that a value for mtry

of 0.1*p may achieve satisfactory results (Goldstein et al., 2010).
The boosting algorithm with this modification would flow as follows:

(Initialization): Given data ¥ = (y, X), let the prediction of phenotypes be

=g

(=]

Then, for m in {1 to M}, with M being large, proceed as:

Step 1. Draw mtry out of p covariates from the original training set to

construct a reduced training covariate matrix P® = (y,X mry) tO train the

algorithm in iteration m.

Step 2. Calculate the loss function L(yi,Fm_l(xi)+ h(yi;xi,mtrym))for all mtry
SNPs and select that minimizing ZL(yi,Fm_l(Xi)+ h(yi;xi’rntrym)) in the
i=1
tuning set at iteration m, with h(y;x,,mtry,) being the prediction of the
observation i in the tuning set using the learned parameters or coefficients of
h(-) on the SNP mtry, . These parameters or coefficients are learned using
the training set as in the original algorithm. Note that if the resulting tuning
set is not large enough, it may be recommended to select the SNP

minimizing the loss function in the training set, without leaving a set aside

set.
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Step 3. Updated  predictions at iteration m in  the

formF_(x,)=F, (X,)+V-h(y;X,mtry, ) with v being some shrinkage factor,

e.g. v=0.10.

Step 4. Update the residuals to be used in the next iteration as y, =y, - F_(X,)-

Repeat steps 1 to 4 a large number of times (M).

This modification causes that the order in which SNPs are selected in the
algorithm change regarding the original boosting, as not all SNPs will be
tested at each iteration. However, the boosting algorithm is considered as a
small step gradient descent technique (Biihlmann, 2006), therefore, for a
sufficient small v, it is expected that the impact of the order in which the
covariates are used to reduce the residual estimates has small or null effect
on the final predictions. Nonetheless, note that small data set might yield

different results for smaller mtry and less number of iterations.

CASE STUDY

Data

The algorithm and the proposed modification were implemented in a real
data set composed by 1859 genotyped bulls. Full details on genotypes and
the edition procedure can be found in Jiménez-Montero et al. (companion
paper). After quality control 39,714 SNPs were kept in the analyses. Sires
born before 2005 were used as a training sample (1601 and 1574individuals
for production and type traits, respectively), whereas younger sires were
used as a testing sample to evaluate predictive ability of the algorithm on yet
to be observed phenotypes. De-regressed proofs (DRP) of four productive
traits (milk yield (MY), fat yield (FY), and protein yield (PY) and fat
percentage (FP)) and one type trait (udder depth (UD)) from January 2009

routine evaluations were used as dependent variables. The DRPs were

- 164 -



The gradient boosting algorithm and random Boosting for genome-assisted evaluation in large data sets

obtained following Jairath et al. (1998). Note that bulls in the testing set did
not have progeny test proofs at that time. For convenience, the ordinary least
square regression and the MSE were chosen as weak learner and loss
function, respectively, as set up in the illustration example number one
above. A 10-fold cross validation scenario was implemented in the training

set. In each fold, 9/10 of the training data were used to calculate the
regression coefficient estimates (4, and Bm ), and the remaining 1/10 records

were used as a tuning set to choose the SNP minimizing the MSE.

The respective DRP from the December 2011 routine evaluations were used
to calculate the predictive ability of the predictions for sires in the testing set.
Only sires with more than 20 effective daughter contribution were kept in
the testing set (258 and 235 for production and type, respectively).The
predictive accuracy was evaluated using Pearson correlation between

predicted and observed (December 2011 DRP) response. The predicted bias

was also calculated as' =1 , with n being the number of validation

bulls.

The random boosting was applied to this data using a grid of values for mtry
(1%, 5%, 10% and 50%), and was compared to the original boosting
(mtry=100%). Further, different values for the smoothing parameter were

tested (v=0.01, 0.10, and 0.20).

Results

Tables 4.1 and 4.2 show the Pearson correlation and bias, respectively,
between predicted and observed phenotype in the testing set, regarding the
smoothing parameter v and mtry for each trait. In general, the predictive
ability of the algorithm was very similar regardless mtry, with differences of

1-2 points in Pearson correlation. Fat percentage showed better predictive
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ability at larger mtry values. The known major genes (e.g. DGAT1),
controlling this trait may partly explain this behavior, as sampling a small
proportion of SNPs at each iteration may miss markers in these hot spots,
hampering the predictive ability of the algorithm. Pearson correlation for
v=0.10 and 0.20 were very similar, although v=0.10 showed equal or higher
Pearson correlation than v=0.20 in all the analyses, excepting for UD with
mtry equal to 5 and 10%.In terms of bias, the value of m#ry did not show a
clear trend, and differences were negligible. Convergence was slower for
smaller values of v, because higher shrinkage is done on each coefficient
estimate and a larger number of covariates are needed to explain the variance
of the observed phenotypes. Nonetheless, the best combination of v and mtry
was trait dependent. As a general recommendation, the random boosting
algorithm may be used to speed up the calculus of genome- assisted
evaluation without a relevant impact on the predicted ability, and in some
cases with higher Pearson correlation between predicted and observed
phenotypes in the testing set than using the original algorithm. Smaller
values of mtry may be used without decreasing the predictive ability and
with a significant reduction in the computation time. Nonetheless, m#ry is
genetic architecture dependent, and a large value is recommended to analyze
traits with known major genes, as in the case of fat percentage. The choice of
mtry and v is under discussion, and cross validation is currently the standard
procedure. A more formal strategy with statistical properties could be

studied in the future.
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Table 4.1. Pearson correlation' between predicted and observed responses in
the testing set using the original gradient boosting algorithm (mtry=100%) or
its modified version “Random Boosting”, for different values of percentage of
SNPs sampled at each iteration (mtry) and smoothing parameter (v)

mtry(%)
v 1 5 10 50 100
ﬁ 0.01 0.495 0.502 0.508 0.507 0.507
= 0.10 0.487 0.500 0.503 0.508 0.503
on
~ 0.20 0.483 0.503 0.503 0.501 0.504
E 0.01 0.552 0.561 0.559 0.559 0.559
QD 0.10 0.567 0.565 0.569 0.556 0.556
0.20 0.551 0.554 0.562 0.550 0.551
§ 0.01 0.454 0.443 0.440 0.443 0.443
o 0.10 0.466 0.441 0.445 0.444 0.444
an
M 0.20 0.465 0.437 0.429 0.434 0.428
E 0.01 0.746 0.753 0.748 0.763 0.768
x 0.10 0.741 0.746 0.748 0.761 0.765
0.20 0.728 0.737 0.740 0.753 0.767
x T
EJ : 0.01 0.496 0.504 0.502 0.509 0.503
,% LS 0.10 0.496 0.502 0.507 0.505 0.505
0.20 0.490 0.505 0.510 0.502 0.507

! Highest value for each trait is in bold.
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Table 4.2. Estimated bias' (measured as average difference between predicted
and observed responses in standard deviation units) in the testing set using the
original gradient boosting algorithm (mtry=100%) or its modified version
“Random Boosting”, for different values of percentage of SNPs sampled at each
iteration (mtry) and smoothing parameter (v)

miry(%)

v 1 5 10 50 100
é 0.01 -0.040 -0.047 -0.037 -0.039 -0.039
= 10.10 -0.044 -0.042 -0.041 -0.035 -0.038
[e1)]
~<10.20 -0.032 -0.014 -0.008 -0.029 -0.026
E 0.01 -0.113 -0.107 -0.104 -0.104 -0.104
20 0.10 -0.121 -0.107 -0.090 -0.100 -0.099

0.20 -0.095 -0.114 -0.103 -0.092 -0.095
é 0.01 -0.049 -0.061 -0.071 -0.067 -0.070
& | 0.10 -0.029 0.062 -0.046 -0.047 -0.058
M | 0.20 -0.025 -0.034 -0.056 -0.068 -0.075
E 0.01 0.039 0.051 0.053 0.046 0.045
< 0.10 0.030 0.053 0.053 0.042 0.040

0.20 0.032 0.048 0.055 0.010 0.041
4 o
2 E 0.01 -0.234 -0.233 -0.232 -0.219 -0.238
gg 0.10 -0.217 -0.226 -0.232 -0.233 -0.231

0.20 -0.219 -0.220 -0.229 -0.241 -0.234

"Lowest value for each trait is in bold.

The original gradient boosting algorithm performed the complete genome-
assisted evaluation (10-folds) in 171.67 hours with v=0.01, 69.17 hours with
v=0.10 and 50 hours with v=0.20 (Table 4.3). The computation time was
substantially reduced using the modification of the algorithm with mitry
=0.01. The smaller times were 1.5, 0.83 and 0.67 hours for m#ry=0.01 and
v=0.01, v=0.10 and v=0.20, respectively. These computing times make
Random boosting feasible for running frequent routine genome-assisted

evaluations with large data sets without impairing the predictive accuracy.
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Note that the parallelization of the code can be implemented at step 2
described above, when searching for the SNP minimizing the loss function.
The parallelization would drastically decrease the computation time of the
algorithm (not implemented in this study).

Table 4.3. Computation time' (in hours) to run 10-fold cross validations (a

complete genomic assisted evaluation cycle) regarding the value of the
smoothing parameter (v) and the proportion of SNPs sampled at each iteration

(mtry)

Smoothing mtry
parameter 1% 5% 10% 50% 100%”
)
v=0.01 1.50 8.33 16.33 86.33 171.67
v=0.10 0.83 3.34 6.67 35.00 69.17
v=0.20 0.67 2.83 5.33 25.00 50.00

'In an Intel Xeon QuadCore E5430 (4x2.66Ghz) proccesor with 8Gb RAM memory under Linux
operating system.
*This value of mtry is equivalent to the original gradient boosting.

Concluding remarks

Incorporating high-density markers into models for prediction of
genetic values poses important statistical and computational challenges.
Machine learning algorithms can be used to deal with the curse of
dimensionality and computational limitations when a large number of
individuals have genotypic information. In particular, the boosting algorithm
provides an efficient strategy to calculate additive genomic breeding values
using high density SNP information. We have provided here a
comprehensive description of the mechanisms of the algorithm and showed
that it can be viewed as an additive gradient descent method that may be
implemented as a SNP regression model. A modification of the algorithm
has been also proposed to speed up computation of genomic breeding values,
with a minimum impact in the predictive ability. The companion study by
Jiménez-Montero et al. (Companion paper) provides comparison of boosting
and random boosting with other methods commonly used in the genome-

assisted evaluations.
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Imputation of genotypes from lower to higher density platforms is an
essential tool to optimize genomic selection programs. Imputation from 3K
and 6K assays to SOK density and later to HD is performed with the aim to
compare predictive ability and selection efficiency of imputed genotypes.
This study considers the performance of these sets of data in terms of their

efficiency when used for selection of top animals in a dairy cattle population.
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Abstract

The aim of this study was to evaluate different density genotyping platforms
for genotype imputation and genomic prediction. Genotypes from
customized Golden Gate Bovine3K BeadChip (LD3K) and BovineLD
BeadChip (LD6K) platforms were imputed to BovineSNP50v2 BeadChip
(50K density). In addition, LD3K, LD6K and 50K genotypes were imputed
to a BovineHD BeadChip (HD) 800K platform, and with predictive ability
evaluated and compared subsequently. Comparisons of prediction accuracy
were carried out using Random Boosting (R-Boost) and Genomic BLUP (G-
BLUP). Four traits under selection in the Spanish Holstein population were
used: milk yield (MY), fat percentage (FP), somatic cell count (SCC), and
days open (DO). Training sets at 50K density for imputation and prediction
included 1632 genotypes. Testing sets for imputation from LD to 50K
contained 834 genotypes while testing sets for genomic evaluation included
383 bulls. The reference population genotyped at HD included 192 bulls.
Imputation using Beagle software was effective for reconstruction of dense
50K and HD genotypes, even when a small reference population was used,

with 98.3% of SNP correctly imputed.

R-Boost outperformed G-BLUP in terms of prediction reliability, mean
squared error and selection effectiveness of top animals in the case of FP.

For other traits however, there were no clear differences between methods.

No differences were found between imputed LD and 50K genotypes,
whereas evaluation of genotypes imputed to HD was on average 4% more
accurate than 50K prediction, and showed smaller (2%) mean squared error
of predictions. Similar bias in regression coefficients was found across data
sets but, regressions were 0.32 units closer to unity for DO when genotypes

were imputed to HD density.
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Regarding selection effectiveness of top animals, more (2%) top bulls were
classified correctly with imputed LD6K genotypes than with LD3K. When
the original 50K genotypes were used, correct classification of top bulls
increased by 1%, and when those genotypes were imputed to HD 3% more
top bulls were detected. Selection effectiveness could be slightly enhanced

for certain traits such as FP, SCC or DO when genotypes are imputed to HD.
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Introduction

Genomic selection (GS) in dairy cattle started in 2006 (De Roos et al.,
2009), when high-density single nucleotide polymorphism (SNP) panels
became affordable for application to livestock and plants (Van Tassell et al.,
2008). The first official direct genomic values (DGV) were provided to dairy
farmers in January 2009 (Wiggans et al., 2009). Despite the improvement in
reliability of young selection candidates achieved with genome enabled
evaluations (Wiggans et al., 2011), the commercial price of high density
SNP chips may limit their use to males and elite females in many

populations.

A next key objective in GS programs is to optimize the use of genomic
information (Pryce and Daetwyler, 2012). Use of low density SNP panels
with subsequent imputation is a promising form of reducing genotyping
costs; this is because use of these low density genotyping platforms could
greatly increase the number of genotyped animals in commercial dairy herds.
The optimal size of such panels depends on population characteristics, such
as extent of linkage disequilibrium, genetic architecture of traits under
selection, number and proportion of animals with high-density SNP
genotypes, and genetic relatedness between these animals and future
candidates (Weigel et al., 2010a). Imputation methods work by combining
data from a reference panel of individuals genotyped at a dense set of
polymorphic sites (usually SNPs) with data from a study sample collected
from a genetically similar population but genotyped at a subset of these sites
(Howie et al., 2009). There is a need to integrate different density SNP
panels in genome-based breeding programs. For accurate imputation of
missing SNPs, the reference population must include a sufficient number of
individuals representative of each SNP allele of the whole population (Hao
et al., 2009). Imputation accuracy is also related to the degree of relationship

between the reference population and the animals to be imputed (Meuwissen
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and Goddard, 2010). Theoretically, heavily represented bulls in the
population, or animals from the most common matings (sire x daughter of a
frequently use sire) are optimum animals to be genotyped as reference
population. High density genotypes (50K) can be imputed from a low
density (2-4K) genotypes with an accuracy above 90% (Weigel et al.,
2010b).

Currently in cattle, the most commonly used chip is the BovineSNP50.v2
Beadchip (Illumina Inc., San Diego, CA) and imputation strategies are
focused on imputation from 6K to 50K. The availability of the 800K SNP
BovineHD BeadChip (Illumina Inc.) opens the chance of imputation from
50K to this higher density panel. Genotyping a large reference population at
extra large high density would be cost prohibitive. However, genotyping a
subset of this reference population, and then imputing the rest of the
genotypes may be an efficient strategy if the predictive ability of subsequent
genomic evaluations exceeds that obtained before imputation. In addition,
imputed SNPs from low density 3K and 6K platforms to high density must

be assessed in terms of predictive ability.

Several methods have been developed for imputation, and software is
publicly available for these methods, (Howie et al., 2009; Kong et al., 2008;
Scheet and Stephens, 2006). Beagle (Browning and Browning, 2009) has
become one of the preferred options for imputation of large data sets
(Boichard et al., 2012; Erbe et al., 2012). This software uses a hidden
Markov model to infer haplotype phase with both typed and un-typed SNPs.
Their competitive imputation accuracy and computational advantages when
compared with other methods have been widely reported (Calus et al., 2011;
Nothnagel et al., 2009; Segelke et al., 2012; Sun et al., 2012).

After imputation, it is possible to estimate DGV with similar accuracy to that

obtained from high density genotyping (Berry and Kearney, 2011). Accuracy
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of DGV for selection candidates can be increased by imputation compared
with estimation based on low density SNPs. Recent studies have shown that
low density genotypes from animals with enough phenotypic information
can be added to the reference population after imputation to increase the

overall accuracy of estimation (Weigel et al., 2010a).

The objective of this study was to compare imputation accuracy, predictive
ability, and selection effectiveness for selection candidates genotyped at
different densities using the Random Boosting (R-Boost) and G-BLUP

methods.

Material and methods
Genotypes and Phenotypes

A total of 2658 genotyped bulls were used in this study, using the
BovineSNP50.v2 Beadchip for 2226 bulls and the BovineSNP50.v1
Beadchip (Illumina Inc.) for 240 bulls. These 2658 bulls build up the 50K
Holstein Spanish population that will be referred to as the 50K population
subsequently. Additionally 192 bulls were genotyped using the
800K BovineHD BeadChip and will subsequently be referred as HD
population. These two sets have been contributed to the Eurogenomics

population.

Before carrying out genome-based sire evaluations, SNPs with greater than
5% incidence of missing genotypes across individuals, and SNPs with minor
allele frequency (MAF) less than 5% were discarded, leaving 39,714 and
540,501 SNPs for the 50K and HD evaluations, respectively. Animals with

call rates lower than 90% were also excluded in the evaluation process.

Four complex traits of economic interest were examined, including milk

yield (MY), fat percentage (FP), somatic cell count (SCC), and days open
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(DO). These traits represent different heritabilities, genetic architectures and

amount of phenotypic information available.

Deregressed MACE progeny proofs (DRP) from the January 2009 Interbull
evaluation (Uppsala, Sweden) calculated as described by Jairath et al.
(1998), and genotypes from progeny tested bulls in the training sets were
used to estimate marker effects. Bulls in the testing sets had DGV in
December 2011 based on 20 or more effective daughter contributions (EDC)

each.

Imputation from LD to S0K

The design of reference and testing sets for imputation process and genomic
evaluation is outlined in Figure 1. The design of training and testing sets
followed recommendations from Méntysaari et al. (2010), but their
recommended four year gap between training and testing sets was reduced to
three years due to the small size of the reference population, thereby leaving

more bulls in the training set to enhance the accuracy of estimated DGV.

Training and testing data sets were generated from individuals genotyped
with the 50K chip based on year of birth. A total of 1632 bulls born before
2006 with progeny test results in January 2009 were used as training set for
imputation and for genome-based evaluation of production traits (MY and
FP). Then, 1629 and 1412 bulls were used as training populations for SCC
and DO respectively. Bulls born between 2006 and 2010 were used as
testing set, resulting in 834 genotypes to be imputed, which 382 were
progeny tested bulls in December 2011. These sires were used as the testing
set for MY and FP genomic predictions, whereas only 380 and 216 had
enough EDC for SCC and DO, respectively.

Low density genotypes were created in silico in the testing set for its

posterior assessment of imputation accuracy. For this purpose, SNPs from
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the 50K assay that were not included in the GoldenGate Bovine 3K (LD3K)
(Illumina Inc.) or the Bovine LD (LD6K) (Illumina Inc.) assays, were
masked. Thereafter, phased haplotypes from the reference population
(TRAINS50K) filled in by BEAGLE were used as reference for imputation of
the LD3K and LD6K validation sets, as well as for the imputation of missing
SNPs in the original 50K set. The outcomes were referred as 3K50K, 6K50K
and TEST50K data sets.

50K POPULATION
2466 bulls
BovineSNP50.v1 & v2

TEST 50K REFERENCE
834 bulls born >2006 1632 bulls born <2006

N

TEST TEST
50K > 3K S0K> 6K

e

< IMPUTINGBEAGLE(3/6K>50K) >

TEST 3KS0K TEST 6KS0 TEST 50K

IMPUTATION

ACCURACY !
3K>50K !
6K>50K |

Figure 5.1. Diagram of the design of reference and validation sets and process
of imputation accuracy evaluation from 3K and 6K to S0K.

- 181 -



Chapter 5

Imputation from S0K to HD

The final process involved imputation of the 3K50K, 6K50K, TEST50K and
TRAINS0K set 3KHD, 6KHD, SOKHD and TRAINSOKHD) respectively to
HD, using the original HD population as training set. Imputation to high
density was performed in two steps for the 3KLD and 6KLD sets, as

recommended in VanRaden et al. (2013).

Accuracy of imputation

The accuracy of the imputation process was measured using the allele error
rate (AER). The errors were counted as 0 when the imputed and actual
marker genotypes were identical, 1 if the actual marker type was
homozygous and the imputed genotype was heterozygous (or vice versa),
and 2 if the actual and imputed marker types were homozygotes for distinct
alleles. Markers/animals where the observed genotype was not missing in the
original non-imputed data set were considered. The AER was calculated as
100 times the total number of errors divided by twice the number of imputed
loci. This gave the rate of falsely predicted alleles, which is an appropriate

measure when using an additive prediction model, as in this study.

Genome-Enabled Evaluation Models

It should be noted that the original HD population was used only for
imputation purposes, and genome-based evaluation comparisons were
carried out using the original 50K data set. Two different evaluation models

were used:

R-Boost. The Random Boosting algorithm (Gonzalez-Recio et al., 2013) is a
machine learning technique that combines different predictors and a
shrinkage factor (Friedman, 2000). Boosting adds basis functions iteratively,
such that each addition further reduces the selected loss function (Hastie et

al., 2005). Ordinary least squares estimation with genotypes as basis function
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was successively applied on the residuals of a previous iteration in the
reference population. The MSE of prediction in a tuning set was used as the
loss function to be minimized. The marker effect shrinkage parameter v of
the algorithm was fixed to 0.10, while the parameter mtry that sets the
percentage of markers sampled per iteration was fixed to 0.05 as suggested

by Gonzalez-Recio et al. (2013).

G-BLUP. The G-BLUP method is similar to standard BLUP evaluations
with the pedigree relationship matrix replaced with a genomic relationship
matrix (G) built from molecular information. Pairs of individuals sharing the
same genotype for a large number of markers will be more similar
genomically, and will have larger values in the corresponding off diagonal
cells of the matrix, as is the case for pairs of related animals in a pedigree-
based relationship matrix. The genomic relationship matrix was computed
'
5> pzfl —p)’
as ! !

allele frequency of locus i; Z is a matrix that results from subtracting P from

following VanRaden (2008), where p is the minor

M, with Pj = 2(Pj -0.5) and M is the matrix of genotypes coded as -1, 0 and 1

for the homozygote, heterozygote and other homozygote, respectively.

Criteria for Comparisons

Reliability, Empirical Bias in Regression Coefficients and MSE. The
prediction accuracy of evaluations was computed as weighted
Pearson’s correlation between the predicted DGVs in the testing set
and the December 2011 DRPs. Regression coefficients of the realized
DRPs on the estimated DGVs were also calculated, because this
parameter is commonly used as a measure of “prediction bias” in
genome-assisted evaluations (Méntysaari et al., 2010). Finally, the

MSE of predictions was also estimated.
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Means and confidence intervals were estimated using bootstrapped
samples in each evaluation output (Efron, 1986). Pairs were the
predicted phenotype in the testing set and its corresponding observed
(known) phenotype. Then, 1000 samples were drawn with
replacement from the whole testing set, and predictive correlation
estimates, regression coefficients and MSE correlation were computed
for each of the bootstrap samples. The MSE is preferable as criterion
when animals with different amount of information are compared
(Vitezica et al., 2011). Finally the confidence interval was considered

as the narrowest interval containing 95% of the replicates.

Selection Effectiveness. This was measured as Oop / Ose, Where Ol
represents a given percentage of bulls ranked by their predicted DGVs
and ay,p represents the percentage of bulls selected by the model that
were in the same percentile according to their realized DPR. This
measure can be interpreted as the fraction of young bulls as ranked by
DGV that actually included at least one truly top bull, or similarly, as
the fraction of truly top bulls that was included in a given set of top

young bulls as predicted by DGV.

Selection effectiveness can also be measured using confusion
matrices. These matrices are commonly used in classification
problems (Edler et al., 2001), and are built by comparing predictions
with realizations in a validation dataset. In this study, predictions and
observations across traits and methods were split into five disjoint
classes according to their observed DRP and predicted DGV rankings.
Therefore each class included 20% of bulls in the testing set.

Observations were classified in rows and predictions in columns.
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Correct predictions fall on the diagonals(a,), and misclassifications
on the off-diagonal (a,,i# j) of the confusion matrix. Elements

above the diagonal represent bulls that were under-evaluated by the
genomic method while outcomes below the diagonal represent bulls
that were over-evaluated. Confusion matrices allow computation of

overall selection effectiveness (E) as the proportion of correctly

n m . .
Zizl Z‘/’:l cij’ (l - J)
n m
Zizl Zj:l Cij

where c,are the elements on the diagonal. Dairy cattle breeding

classified observations for a given C matrix: £ =

2

programs may be interested on the effectiveness of top bulls selection;
this can be computed from the confusion tables as the proportion of
Cll

=
2. 26

Similarly, effectiveness of selection was also computed for the top

correctly classified bulls in the first class: E, =

60% bulls to provide a measure at low selection intensity scenarios:

3 3
_ Zi:l z]‘:l Gy
- n 3 :
Zi:l z]‘:l cij

E 60%

Results and discussion
Imputation Performance

Imputation performances from customized LD3K and LD6K to 50K
density resulted in an AER of 3.1% and 1.3%, respectively. These
results agree with previous studies using similar population sizes

(Berry and Kearney, 2011; Dassonneville et al., 2012; Zhang and
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Druet, 2010). Based on these results, use of the LD6K array should be

an important improvement.

It must be noted that, our results may be slightly over optimistic,
because LD genotypes are masked instead of directly genotyped,
especially in the case of 3KLD due to the different chemistries used
(Dassonneville et al., 2012). Regarding imputation from 50K to HD, a
small number of HD genotypes could be enough for accurate
imputation in some populations (Schrooten et al., GSE submitted),
despite the fact that this accuracy can be enhanced when more HD
genotypes are included within the range of genotypes used in this
study. In a previous pilot study, AER(x100) after imputation from
50K to HD was 0.9% when for our set of data.

Validation of genomic evaluations

Reliability. Table 1 shows the results for predictive reliability obtained
with the two methods considered. Both methods resulted in similar
accuracy; R-Boost was the preferred method for FP, whereas G-BLUP
was for MY and DO. No clear advantages for a particular method

were observed for SCC.

Regarding SNP density, the imputation of low density genotypes to a S0K
panel resulted in accuracies in the range to these observed for the original
50K genotypes, mainly for the LD6K case, in agreement with results
reported previously by Segelke et al. (2012). Predictive reliability from 6K
to SOK was 2% higher, averaged across traits, than from 3K. In practice, this
difference is expected to be larger since the LD3K assay was developed
using a different technology than the 6K and 50K assays (Dassonneville et
al., 2012). For traits related to fertility, imputed genotypes were competitive
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compared with the 50K data set. Erbe et al. (2012) reported higher
accuracies for genotypes imputed to HD than for the true high density
genotypes for fertility traits, although they did not show statistical

differences between them.

Table 5.1. Reliability of predictions of G-BLUP and R-Boost for four traits
after imputation from 3K, 6K and 50K to S0K and HD. Mean of the 1000
Bootstrap replicates and confidence intervals (C.I.) constructed as the
narrowest gap containing 95% of the replicates are shown

Trait Method  3K50K  6KS0K  TESTSOK 3KHD  6KHD  S0KHD
G-BLUP 059 0.59 0.59 0.54 0.54 0.55
Mille Yield 0.53 0.66 051 0.65 052 0.66 047 0.61 047 0.61 047 0.62
(MY) R-Boost  0.53 0.55 0.57 0.52 0.54 0.54
C.L 045 0.60 047 0.62 050 0.64 044 059 046 0.61 047 0.62
G-BLUP  0.59 0.60 0.60 0.54 0.55 0.55
FatPercentage | 053 0.65 053 067 0.54 067 046 0.61 047 062 048 0.63
(FP) R-Boost  0.73 0.78 0.78 0.74 0.79 0.80
C.1. 0.67 0.78 0.74 082 0.74 082 0.67 079 075 0.83 0.75 0.84
G-BLUP 049 0.49 0.48 0.4 0.50 0.47
Somatic Cell (. 1. 0.40 0.58 040 0.58 0.39 0.57 034 0.54 041 059 0.38 0.56
Count (SCC) R-Boost  0.46 0.45 0.46 0.46 0.50 0.49
C.1. 037 0.55 036 055 036 054 036 0.55 041 0.58 0.40 0.58
G-BLUP 025 0.29 0.19 0.29 0.32 031
Days Open  C.1I. 0.10 040 0.14 043 002 033 0.14 044 0.8 046 0.18 0.46
(DO) R-Boost  0.20 0.19 0.22 0.25 0.20 0.28
C.L 0.04 036 0.02 033 0.08 038 0.10 039 0.05 037 0.2 0.43

In bold: The preferred method within trait and set criteria

Lower reliability for MY using genotypes imputed to HD was found
regarding the original 50K genotypes. However, modest improvements
occurred for FP, SCC and DO. Similar performance was found between data
sets imputed from LD to HD. This result was in accordance with those
previously reported in other Holstein populations, where HD estimates were

only slightly better than those from 50K genotypes (Erbe et al., 2012;

- 187 -



Chapter 5

VanRaden et al., 2013). In a recent study, Jensen et al. (2012) concluded that
92% of all additive genetic variance could be explained using 44K SNP
markers, and that further increases in marker density will have limited
effects on the predictive accuracy, unless better methods are used to

distinguishing between markers with real effects and markers with no effect.

Confidence intervals estimated by bootstrapping showed that distributions of
prediction reliability widely overlapped across methods and sets for MY and
SCC. However, R-Boost estimates were more accurate than G-BLUP for FP.
As expected, large CIs were found for DO, probably due to the reference

population size and the amount of information for each bull.

Empirical Bias of Regression Coefficients The estimated “b” values of
the regression of realized DRP on estimated DGV for the traits, methods,
and genotyped sets considered are shown in Table 2. Estimated regression
coefficients were close to unity for MY, SCC and DO using R-Boost, while
G-BLUP showed values closer to unity for FP. These values were within the
range of previously reported values for other populations (Olson et al.,

2011).

No relevant differences were found between 3KLD and 6KLD in terms of
the “b” values. In general, data sets using HD genotypes resulted in similar
departures from unity as the evaluations using 50K genotypes. However, for
DO the imputation to HD led to more favorable “b” values but still far from
the unity when G-BLUP was used. Su et al. (2012) also reported slightly
better performance at HD density for fertility traits regarding bias in the
regression coefficient. Values of the coefficient for this case should increase
if new animals are included in the reference population and their DRP are
based on larger EDC. Confidence intervals from R-Boost included the unity

for MY in the 50K data set, and all data sets for SCC and DO, the latter as a
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result of a large uncertainty. However, for G-BLUP only estimates for FP

included unity.

Table 5.2. Regression coefficients from G-BLUP and R-Boost for four traits
after imputation from 3K, 6K and 50K to S0K and HD. Mean of the 1000
Bootstrap replicates and confidence intervals (C.I.) constructed as the
narrowest gap containing 95% of the replicates are shown

Trait Method ~ 3K50K  6K50K  TESTS0K  3KHD 6KHD  50KHD
G-BLUP (74 0.72 0.72 0.68 0.67 0.67
Milk Yield
C.L 063 0.84 061 082 062 083 057 079 056 0.76 0.58 0.79
(MY)
R-Boost 0.86 0.88 0.90 0.84 0.85 0.85
C.L 072 101 075 1.03 077 105 071 099 0.69 097 070 0.98
G-BLUP | g 1.02 1.01 0.93 0.94 0.93
Fat Percentage
L 094 123 088 1.15 0.87 1.14 078 1.08 080 1.11 0.78 1.08
(FP)
R-Boost 1.17 1.29 1.30 1.13 1.24 1.25
C.L 1.05 128 1.19 140 120 141 1.01 122 1.15 134 115 136
G-BLUP 59 0.60 0.58 0.62 0.61 0.67

Somatic Cell - C. 1. 048 073 047 0.72 045 0.69 047 078 049 0.74 051 0.81

Count (SCC)  R-Boost 1.03 0.98 1.00 1.03 1.06 1.03
C.L 079 127 076 123 077 122 079 129 083 126 0.82 125
G-BLUP 39 0.45 025 0.47 0.51 0.51

Days Open C.L 0.14 0.64 021 070 0.03 045 021 070 028 0.78 026 0.75

(DO) R-Boost 0.74 0.64 0.99 0.85 0.58 0.91
C.L 0.15 143 0.0 1.14 031 170 030 133 0.14 1.06 035 1.44

In bold: The preferred method within trait and set criteria

Mean Squared Error. The MSE of predictions showed differences
between evaluation methods (Table 3). R-Boost had smaller MSE for
the four traits although Cls overlapped for all traits except for FP,
where R-Boost showed significantly smaller MSE. In general, MSE
estimates from R-Boost predictions were 12%, 54%, 12%, and 5%
smaller than those from G-BLUP for MY, FP, SCC, and DO,
respectively. These results and the aforementioned reliabilities and

regression coefficients are in agreement with those reported by
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Jiménez-Montero et al. (2013) who compared different methods using

a similar population and different traits.

Table 5.3. Mean Squared Errors for G-BLUP and R-Boost for four traits after
imputation from 3K, 6K and S0K to SOK and HD. Mean of the 1000 Bootstrap
replicates and confidence intervals (C.I.) constructed as the narrowest gap
containing 95% of the replicates are shown

Trait Method 3K50K  6KS0K  TESTS0K  3KHD 6KHD 50KHD
Milk G-BLUP 256 255 258 277 276 278
Yield C.L 217 291 220 296 222 299 237 317 240 317 238 315
My)y  ReBoost 244 236 229 247 241 240
C.L 206 280 201 274 198 266 212 284 206 278 205 281
Fat G-BLUP 0.044 0.044 0.044 0.048 0.048 0.047

0.03 0.05 0.03 0.05 0.03 0.05 0.04 0.05 0.04 005 0.04 0.05

Percenta,
& ClL 8 1 8 0 9 1 2 5 1 4 1 4

¢ R-Boost 0.034 0.030 0.030 0.032 0.028 0.027
(FP) C1L 0.02 0.03 002 003 002 003 002 003 002 003 002 0.03
8 9 6 4 6 5 6 8 4 2 3 2

Somatic ~ G-BLUP 157.8 155.1 154.5 149.2 152.0 1433
o 134, 178. 130. 175. 132. 177. 126. 171. 129. 172. 122. 164

Cell = 5 9 2 7 3 4 7 3 1 2 9 5
Count ~ R-Boost 136.6 138.3 137.4 137.1 1317 133.4
(SCO 1 117. 157. 118. 160. 115. 158. 117. 156. 115. 153. 114. 154.
- 5 7 8§ 5 4 0 8 4 0 6 2 5

Davs G-BLUP 562.6 548.6 636.3 5375 5302 535.1
y o 460. 673. 446. 656. 518. 758. 433. 642. 437. 638. 440. 644
- 1 3 4 1 8 7 5 0 5 8 1 1

Open

R-Boost 531.7 541.9 523.4 519.4 546.4 519.6
(DO) c1 429. 638. 441. 641. 429. 634. 405. 618. 426. 650. 415. 619.

6 2 1 5 5 7 7 7 5 9 7 2

In bold: The preferred method within trait and set criteria
'Values x 1000

The 6KLD set showed smaller MSE than 3KLD for MY and FP after
imputation, but no clear differences were found for SCC and DO.
Slightly smaller MSE was observed for the SOKHD set regardless the
trait and method, except for MY, and the improvement averaged only
1 % across traits. The SOKHD set also out-performed LD sets after
imputation to HD. Imputation from 50K to HD resulted in 1% and 3
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% smaller MSE averaged across traits and methods regarding

imputation from 6K and 3K, respectively.

Bootstrap confidence intervals from G-BLUP and R-Boost overlapped
for MY, SCC and DO, showing similar levels of uncertainty. R-Boost
showed clear smaller MSE for FP as reported above for reliability and
regression slopes, estimations with 50K sets were preferred over HD
for MY. Nevertheless, MSE from predictions using HD genotypes
was smaller for FP, SCC and DO, but no clear differences were

obtained and the bootstrapped confidence intervals overlapped.

Selection Effectiveness. Both R-Boost and G-BLUP performed in a
similar manner at selecting top ranked bulls regarding their observed
DRP (Online appendix I). Differences were observed only for FP in
favor of R-Boost (Figure 2). Selection accuracy of top bulls was
slightly higher with HD genotypes, as an example, 57 % instead of
50% of bulls ranked in the percentile 90 regarding observed DRPs
were also ranked in percentile 90 regarding DGV. A large percentage
of actual top bulls for MY, FP and DO were ranked on top when R-
Boost was the evaluation method and HD genotypes were used. For
other cases, 50K and HD resulted in similar patterns. The R-Boost
showed better selection effectiveness than G-BLUP using HD
genotypes, probably because R-Boost is based on estimation of
individual SNP effects instead of average genomic similarity between

pairs of individuals.
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G-BLUP FP R-Boost FP

% Top Bulls
3
|

% Top Bulls
3
|

% Bulls Selected % Bulls Selected

Figure 5.2. Percentage of common bulls in the observed and predicted rankings
when less or equals than top 10% of genomically evaluated bulls are selected
regarding fat percentage. Comparison between S0K (—) and HD (x) genotypes.

Another way to measure selection efficiency is through confusion tables.
Bulls in the testing sets were classified according to observed DRPs and
predicted DGV rankings (Online appendix II). As an example, the 6K50K
and 50KHD cases are shown in table 4. An equal or larger number of
animals in each percentile were correctly classified regarding observed
DRPs using imputation from 50K to HD than imputation from 6K to 50K.
Averaged across methods, 3 out of 382, 8.5 out of 382, 0.5 out of 380, and
3.5 out of 216 more animals were classified in the same percentile for MY,
FP, SCC, and DO respectively. For all cases, genomic evaluation methods
classified correctly more animals in the two extreme classes than in the three

intermediate.
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Table 5.4. Confusion matrices for classification of bulls into five classes
according to their ranking regarding observed DRPs for four traits and the
evaluation methods' used after imputation from 6K to 50K and from 50K to
HD. Observed and predicted classes in rows and columns respectively. Results
are absolute values.

6K50K 50KHD
Milk Yield (MY)

G-BLUP 3 23 14 3 3 31 24 15 3 4
17 26 14 9 10 17 23 14 12 10
15 15 19 21 6 16 16 17 18 9
0 8 17 21 20 12 9 15 25 15
1 4 12 22 38 1 4 15 18 39

R-Boost' 33 23 10 8 3 33 23 9 9 3
20 19 20 9 8 17 24 16 10 9
100 20 20 14 12 15 15 21 17 8
9 10 17 18 22 7 9 20 18 22
5 4 9 27 3 5 5 10 22 35
Fat Percentage (FP)

G-BLUP 37 19 12 7 2 3 17 10 9 3
18 24 15 15 4 16 21 21 12 6
11 16 20 14 15 13 14 23 12 14

1 17 17 2 6 18 11 23 18
6 12 23 34 4 6 11 20 36

R-Boost' 44 21 o 3 0 46 18 13 0 0
23 22 20 10 1 17 27 22
9 21 21 16 9 1 21 18 22 4
1 10 19 29 17 38 16 31 18
0 2 7 18 50 0 2 7 16 52

Somatic Cell Conunt (SCC)

G-BLUP 31 24 5 12 4 2 7 10 10 7
19 17 12 16 12 13 21 15 17 10
4 21 19 14 8 10 20 16 16 14
9 9 20 18 20 7 20 14 17 18
35 2 16 32 4 8 21 16 27

R-Boost' 31 18 13 11 3 32 21 11 8 4
15 23 16 11 11 15 22 17 14
2 13 22 20 9 13 13 23 12 15
4 12 13 17 20 3 9 17 16 21
4 10 12 17 33 3 11 8 26 28
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Days Open (DO)

G-BLUP 1 15 7 5 4 2 16 5 5
1 s 9 11 9 10 11
7 14 9 3 10 19 9 7
7 4 10 9 13 7 9 9 12
6 8 15 10 4 1 10 13
R-Boost' 5 7 12 o 2 13 13 7 4
6 13 7 9 8 7 13 71 7
9 10 7 6 11 9 9 8 10
8 5 6 12 12 8 4 8 13 10
7 8 11 7 11 6 4 13 9 12

In bold: Preferred method within trait and set criterion for selection of bulls in the first class (Ranked in
the top 20% according their DRPs)
"Method: G-BLUP (Genomic BLUP); R-Boost (Random Boosting)

Results from confusion matrices are also shown in Table 5 as rates,
including overall rate of correctly classified animals, rate of correctly
classified in the first class (Top 20%), and rate of correctly classified within
the top three classes (Top 60%). Small differences were found between data
sets and methods. Averaged across sets R-Boost classified correctly more
animals in the first class (Top 20%) when MY (43.5% vs 42.8%) and FP
(56.3% vs 48.8%) were considered. However G-BLUP outperformed R-
Boost for SCC (44.8% vs 40.3%) and DO (29.6% vs 27.3%). Also, for three
out of four traits FP (53.5% vs 51.6%), SCC (44.5% vs 40.6%) and DO
(26.2% vs 27.8%), HD estimates correctly classified more animals as
belonging to the top class than predictions based on 50K genotypes. The rate
of animals correctly classified using HD genotypes ranged between 0.21 for
DO to 0.46 for FP, and it was only poorer for MY (41.6% vs 44.6%). On
average 32% of animals were correctly classified regarding their observed
DRPs across traits, sets and methods. It must be noted that 20%, 20%, and
60% of animals will be correctly classified if selected at random regarding
Overall, Top 20% and Top 60% criteria. From this point of view genomic

selection increased this figures in 12%, 22%, and 13% respectively, and the
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use of genomic selection seems to offer some advantages in high selection

intensity scenarios.

All predictive ability measures are based on DPR observations, which are
approximations to the true breeding values, and therefore, some error is

expected on the true classification of methods and sets.

Table 5.5 Rate of animals correctly classified according to their ranking in five
classes each one containing 20% of the values (Overall), correctly classified in
the first class (Top 20%), or within the three highest classes (Top 60 %).
Animals were ranked regarding observed DRPs for four traits and the
evaluation methods' used after imputation from 3K, 6K and 50K to 50K and
HD.

3K50K 6K50K S0K50K 3KHD 6KHD S0KHD

Milk Yied (MY)

G-BLUP
Overall 0.35 0.36 0.37 0.34 0.34 0.35
Top 20% 0.45 0.44 0.48 0.40 0.40 0.40
Top 60% 0.77 0.77 0.78 0.75 0.76 0.76
R-Boost'
Overall 0.33 0.32 0.34 0.34 0.32 0.34
Top 20% 0.43 0.43 0.45 0.44 0.43 0.43
Top 60% 0.75 0.76 0.78 0.73 0.74 0.76
Fat Percentage (FP)
G-BLUP
Overall 0.35 0.35 0.36 0.36 0.36 0.37
Top 20% 0.48 0.48 0.49 0.48 0.51 0.49
Top 60% 0.76 0.75 0.76 0.75 0.76 0.76
R-Boost'
Overall 0.43 0.43 0.45 0.44 0.43 0.46
Top 20% 0.52 0.57 0.56 0.57 0.56 0.60
Top 60% 0.82 0.83 0.84 0.82 0.83 0.84
Somatic Cell Count (SCC)
G-BLUP
Overall 0.31 0.31 0.32 0.30 0.31 0.32
Top 20% 0.42 0.41 0.42 0.50 0.39 0.55
Top 60% 0.71 0.71 0.72 0.68 0.72 0.68
R-Boost'
Overall 0.32 0.33 0.34 0.32 0.35 0.32
Top 20% 0.39 0.41 0.39 0.39 0.42 0.42
Top 60% 0.71 0.71 0.72 0.71 0.73 0.73
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3K50K 6K50K 50K50K 3KHD
Days Open (DO)
G-BLUP
Overall 0.23 0.21 0.22 0.25 0.24 0.23
Top 20% 0.28 0.28 0.28 0.33 0.33 0.28
Top 60% 0.67 0.69 0.65 0.67 0.67 0.67
R-Boost'
Overall 0.22 0.26 0.23 0.22 0.25 0.27
Top 20% 0.23 0.30 0.30 0.28 0.23 0.30
Top 60% 0.67 0.65 0.64 0.65 0.67 0.67

In bold: The preferred method within trait and set criteria for the correct classification of bulls (overall),
correct classification in the first class (Top 20%) or within three top classes (Top 60%)
'Method: G-BLUP (Genomic BLUP); R-Boost (Random Boosting)

Conclusions

The Beagle software was efficient for the reconstruction of 50K
genotypes from low density chips and also for imputation to HD, even

with a small HD reference population.

Genomic evaluation methods (R-Boost and G-BLUP) resulted in
similar prediction ability for the traits and genotypes included in this
study. R-Boost showed clearly better performance for traits regulated

for major genes.

Genotypes in 3K density showed worse imputation accuracy
performance but only slightly worse predictive ability. In general,
genotypes imputed from LD presented similar predictive ability to that
from the original 50K genotypes. However, imputation to HD showed
2% smaller MSE of yet-to-be observed DPR, providing an interesting
alternative to reduce bias of predictions. Low density genotyping and
posterior imputation is an interesting approach to reduce genotyping

costs for pre-selection of young candidates and on-farm decisions, as

- 196 -



Predictive ability of dairy cattle genotypes imputed from different density platforms

no remarkable lack on selection efficiency is caused during the
imputation process. Genomic-based mating programs could benefit

also from imputed genotypes.

Selection efficiency could be slightly enhanced for certain traits like
FP, SCC or DO, especially when the aim of the evaluation is to detect
top animals in the population. Genetic evaluation units may consider a
trait dependent strategy in terms of method and genotype density for

their utilization in the genome-enhanced evaluations.
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Dairy cattle markets are changing since high reliable breeding values can be
obtained early in the animal’s life using GS, with no need of own or close
relatives phenotypes. Therefore, genetic gains of properly designed genomic

programs largely overcome traditional approaches.

The field implementation of genomic selection firstly affects Al centers with
regards to selection of candidates for progeny testing. GS is expected to
increase reliability of predictions regarding traditional PI. Further, marketing
genomic candidates yet to be progeny proved, would be a new product in the

portfolio offered by Al companies.

Then, GS was also beneficial for commercial farms. More reliable Young
bulls with genome-based evaluations replace those still to be proven based
on PI. Young bulls may have outstanding breeding values and due to their
reliabilities should be marketed at lower prices than top proven bulls. The
use of sets of 4-6 young bulls should be a recommended strategy to avoid

risks due to lower reliability.

Most of the programs have some restrictions about the rights for obtaining
genomic breeding values of males, but this situation could be modified in the
near future, so that some farmers can keep some extra benefits from bulls

born on their farms.

Replacement and culling decisions could be done more accurately if females
are genotyped. In addition, selection of bull dams could be done in a fairer

situation than previously.

In summary, this new technology could be greatly beneficial for actors using

it properly.
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The results in this thesis suggest that female genotypes are valuable as RP. If
females are genotyped, predictive ability depends largely on the genotyping
strategy. Genotyping just the top ranking cows as reference result in poor
results. However, predictive ability is notably enhanced if cows in the

opposite tail of the distribution are also included.

The Spanish genomic population had more than 1600 highly reliable proven
bulls. This number seemed insufficient to obtain accurate genomic
predictions to allow exploiting the fully potential of GS. Therefore, it was
necessary to increment the size of the RP with new animals. Before joining
the Eurogenomics consortium, a measure that solved the problem for the
Spanish population, different options had to be evaluated to obtain
information about interesting animals. Different exchange conventions and
strategic alliances were planned with the aim to share this valuable data. The
exchange of genomic information is needed, but also genetic values or
phenotypic information associated with the genotypes must be shared. Both

sources of information are required to obtain future predictions.

The first objective of the thesis was to evaluate different genotyping
strategies based on simulated data in the context of a limited proven bull
population. To increase the size of the RP the suggested alternative to that
was the use of genotyped females as a complementary option independent
from the exchange of genotypes with other counties. It must be noted that
phenotypic records from females are more affected by environmental
factors, but despite the fact they can be corrected by statistical methods,
probably estimates of genomic values will be less reliable. On the other hand
we must not underestimate the potential of these phenotypes because they
are the best source of direct information about the genotypes. Therefore,
females should be taken into account, not only as complement to the
information provided by bulls, but probably in the future as members of the

RP. Results from this thesis showed that predictions from a RP built with
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females from the two tails of the distribution over-performed accuracies
from a male RP. That information allows the option of genotyping females
as RP. It is possible to increase accuracy of genomic evaluation for those
populations with a limited number of highly reliable progeny tested sires.
However the implementation of genomic evaluations from a two tailed RP

pases certain difficulties of application:

Good farming recording scheme is a mandatory pre-requisite, as well as the
definition of selection criteria for the two tails. Our simulation dealt with two
different heritability traits but in a single trait design. Today’s dairy cattle
selection is based on multi-trait evaluation. Genotyping a different RP for
each trait does not seem possible in the current scenario of chip prices. In
contrast it could be created a divergent RP respect to a combined index or

the most interesting traits.

Females from the two tails of the predicted distribution may be highly
influenced by environmental conditions that distort their breeding values.
For that reason, a prior filtering and a deep understanding of the industry and
its production systems are required. Preferential treatments or particular
stress situations affecting these females should be avoided. There may be a
disagreement on the genotyping of animals located in the low percentiles of
the distributions. However, based on the results of this work, it is necessary
to avoid genotyping of only the best animals as RP. Similar results have
been published in another simulation study (Ehsani et al., 2010). These
works showed the importance of considering animals with poor performance
and in the extreme of the distribution that is opposite to that selected
individuals. The inclusion of these animals improved results observed above
random genotyping regarding predictive ability. Data recording of these
animals and genotyping costs may be justified by the significant
improvement in the accuracy of the evaluations and the benefits for the rest

of the population.
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In a recent study, Boligon et al. (2012) carried out a comparable simulation
to that detailed in Chapter 2. They used similar genotyping strategies
including a 0.5 heritability trait, different selection intensities and a scenario
were genotyping strategies were applied to an indicator trait. Results were
evaluated for a target trait, with the genetic correlation between the two traits
set to 0.50. Their result agreed with the results of this thesis, genotyping
strategies based on one tail of the distribution resulted in low prediction
ability. Also, extreme animals in both tails of the distribution, were the most
informative when training GS models. This was the best strategy for
obtaining the highest correlation between genomic predictions and simulated
true breeding values for a correlated trait, but it was not the best strategy in
terms of mean squared error that is considered a more complet comparison.
Their simulations our results provide a wide range of scenarios of trait
heritability, dependent variable, generations of selection, selection intensity
and selection on correlated traits. However, the ranking of performance of
the selective genotyping strategies was consistent across studies and should

be maintained across a wide range of scenarios.

Studies based on simulations offer the advantage of modeling different
scenarios in fully controlled situations and help to take decisions with a
greater degree of confidence in cases where there is no real data available.
We must take into account the limitations of the simulations when drawing

conclusions.

Results from this thesis are of relevance to other small populations or those
with a limited number of highly reliable individuals. For example, in beef
cattle, it is almost unfeasible to achieve reasonable reliabilities for young
animals for carcass traits. Such traits are generally expressed late in life,
require slaughtering the animals, and incur a high cost of measurement. In
such cases, it is possible to use marker information from a set of animals in

previous generations to predict performance in the next generation. The
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results of this study show that the predictive ability of breeding values will

depend, among other factors, on which animals are genotyped in the RP.

After genotyping the RP, development of methods that are able to deal with
high-density markers was required. Therefore, the second objective of this
thesis was the development of a reliable genomic evaluation in terms of
prediction accuracy, computational efficiency and also flexible for further

future developments.

Descriptions of the genomic structure showed that the Spanish population is
similar to other Holstein dairy cattle populations in terms of MAF, Linkage
disequilibrium and heterozygosity, as expected (Wiggans et al., 2009a;
Banos and Coffey, 2010; Habier et al., 2010). Based on this similarity,
genomic evaluations of genotyped animals for recorded traits included in the

milk recording scheme should be feasible.

Machine learning algorithms can be used to deal with the curse of
dimensionality, and computational limitations when a large number of
individuals have genotypic information. This thesis describes the R-Boost
algorithm which was compared with B-LASSO, Bayes-A and G-BLUP in

terms of accuracy, bias and MSE.

B-LASSO provided the highest Pearson correlations averaged across traits.
However, differences in accuracy between methods were small, with the
exception of FP where R-Boost achieved greatest accuracy. There were no
relevant differences between R-Boost and the additive models based on
marker regression, except for FP. Although machine learning techniques are
expected to accommodate cryptic relationships in the data, the use of
dependent variables that represent previously computed (additive, linear and
smoothed) sire EBVs could mask such differences. R-Boost seems to

provide some advantages over Bayesian regression when a small number of
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QTL regulate the trait under purely additive action (Gonzéalez-Recio and

Forni, 2011).

When the genomic predictions of young bulls are compared with those of
highly reliable, progeny-tested bulls, biases from genomic predictions must
be taken into account. The DGV of bulls in the testing set showed an average
deviation over the realized DRP of 0.08 genetic SD across methods and
traits. Standardized bias showed greater differences between methods than
Pearson correlations. R-Boost resulted in nearly unbiased predictions for
MY and FP and also produced the least bias for PY, whereas B-LASSO,
produced the least bias in predictions for FY, FP and UD. Bayes-A showed a
similar bias to R-Boost for PY. G-BLUP tended to provide, more biased

predictions for all traits, with the exception of UD.

The coefficients of regressing realized DRP on estimated DGV are
commonly used as a measure of bias in genomic evaluations. Given the
model, the expected value for this slope coefficient is unity if evaluations
predict the actual magnitude of differences between bulls, if the genotyped
young bulls are a representative sample of the bulls in the population.
However, the genotyped young bulls are typically pre-selected by the Al
centers based on their EBV or Sire-PI (Méntysaari et al., 2010). In our study,
regression coefficients ranged between 0.58 for Bayes-A (MY) and 1.19 for
the R-Boost (FP). R-Boost provided slope coefficient closest to unity for
four of the five traits (0.87 for MY, 0.99 for FY, 0.80 for PY and 0.82 for
UD). These Regression coefficients were within the range reported in other
studies in similar dairy cattle populations (Olson et al., 2011; Tsuruta et al.,

2011).

MSE may be a more appropriate comparison criterion than the Pearson

correlation, as it combines accuracy and bias. R-Boost was the preferred
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method across traits in terms of MSE providing the smallest MSE on

average, followed by B-LASSO, Bayes-A, and G-BLUP respectively.

Based on these results, R-Boost was considered as an efficient method of
predicting additive genomic breeding values using high-density marker
information and large data sets. R-Boost predictions resulted especially
competitive in terms of mean prediction error and coefficient of the
regression of realized DRP on estimated DGV. In addition, this methodology
also produces lower MSE estimates. MSE is considered a measurement of
overall fit of the model to the data, accounting for both accuracy and bias. It
is recommended when animals with different amount of information are

compared (Vitezica et al., 2011) as is the case of Dairy Cattle.

Currently, large numbers of dairy cattle females are being genotyped (Faust
and Olson, 2012) so there are becoming more representative of the overall
population than males (Boichard et al., 2012). Under this situation the use of
proper phenotypes and female genotypes as a main source of genomic
information will be a reasonable scenario. Flexible prediction methods able
to deal with complex genetic and environment interactions should be

valuable. R-Boost is expected to deal with these scenarios properly.

When the Spanish genomic program joined the Eurogenomics consortium,
the RP size was increased sizably. Therefore, the evaluation methodology
should be adapted to the new requirements. A modification of the original
Boosting algorithm was proposed to speed up computation of genomic
breeding values, with a minimum impact in predictive ability. This
modifications included sampling a percentage (mtry) of markers on each
iteration instead of the whole set and the inclusion of the shrinkage factor (v)
over the predictions. The original gradient boosting algorithm performed the
complete genome-assisted evaluation (10-folds) in 171.67 hours with

v=0.01, 69.17 hours with v=0.10 and 50 hours with v=0.20. The computation
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time was substantially reduced using the modification of the algorithm with
mtry =0.01. The smaller times were 1.5, 0.83 and 0.67 hours for mtry=0.01
and v=0.01, v=0.10 and v=0.20, respectively. These computing times make
Random boosting feasible for running frequent routine genome-assisted
evaluations with large data sets without impairing predictive accuracy. The
choice of mtry and v is under discussion, and cross validation is currently the
standard procedure. A more formal strategy with statistical properties could

be studied in the future.

Cost effectiveness is a key point in genomic selection programs. The use of
inexpensive low density chips and posterior imputation is an efficient
strategy for increasing the number of genotypes and therefore, for
multiplying the benefits of genomics. Accordingly, the third objective of the
thesis was to implement a flexible and efficient imputation design for

different density genotypes.

Imputation performances using BEAGLE from customized LD3K and
LD6K to 50K density in terms of AER were 3.1% and 1.3%, respectively.
These results are in accordance with previous studies using similar
population sizes (Berry and Kearney, 2011; Dassonneville et al., 2012;
Zhang and Druet, 2010). Regarding imputation from 50K to HD, a small
number of HD genotypes could be enough for accurate imputation in some
populations (Schrooten et al., personal communication), despite the fact that
this accuracy can be enhanced when more HD genotypes are included within
the range of genotypes used in this study. In a previous pilot study,
AER(x100) after imputation from 50K to HD was 0.9 when 192 HD bulls

were used as reference.

Differences between LD3K and LD6K were more noticeable for imputation
accuracy than for prediction ability or selection efficiency. In general,

genotypes imputed from LD performed similarly to those obtained for the
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animals originally genotyped at 50K in terms of prediction ability. LD
genotyping and imputation could be an interesting approach in order to
reduce genotyping costs, as no obvious reduction of selection efficiency is
produced by the imputation process. Imputation could be useful for pre-
selection of progeny testing candidates, genomic mating programs, or to
increases the reliability of low heritability traits through the inclusion of
some of these animals in the RP. In addition, LD chips could allow genomic
selection programs to be implemented in other species or breeds where it is

not affordable at current costs.

Imputation to HD showed similar overall predictive performance to 50K
evaluations in terms of Pearson correlation, MSE, and regression
coefficients. However, selection effectiveness could be slightly enhanced for
certain traits like FP, SCC or DO, especially when the aim of the evaluation
is to detect top animals in the population. Imputation to HD may be justified
due to the larger number of actual top bulls identified as selection

candidates.

The results in this thesis suggest that genotyping at 6K density does not
affect future predictive ability and selection decisions, if genotypes were
previously imputed to 50K. In addition, accurate imputations can be
performed from 50K to 700K density using small numbers of ultra high
density genotypes as reference. Those HD imputed genotypes are expected
to enhance genomic selection in some scenarios using adequate evaluation

methods.

Implementation of Spanish genomic program

This thesis has been developed in parallel with the implementation of the
Spanish genomic program adapting the objectives of research to the industry

requirements.
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The Spanish dairy cattle population is mostly Holstein breed (99%). More
than 60% of the Holstein cows are already registered in CONAFE (data from
2011), the national breeders association that includes all regional
associations. CONAFE is in charge of the basic recording scheme that
includes 26 traits included in the national genetic index (ICO). Also

CONAFE runs traditional genetic evaluations and is part of Interbull.

There are four main testing scheme programs ABEREKIN, ASCOL,
GENETICAL and XENETICA FONTAO reaching 140 progeny tested bulls
per year. Those bulls are tested all around the country over more than
400,000 cows. As a result more than 900 bulls have been currently tested in
Spain. Some of these bulls are nationally and internationally marketed after
testing. The amount of progeny tested sires was clearly not enough to build a
RP able to provide reliable predictions. Among other alternatives to
genotype share, inclusion of females as reference population should be
evaluated. Within this scenario the thesis was titled “Genomic selection in
small dairy cattle populations” and the first objective was to study different
genotyping strategies including females as RP detailed in the Chapter 2 of
this thesis.

In the history of genomic selection in dairy cattle, some events were of great
importance for the future implementation of the national program. The first
scientific manuscript dealing with methodology was published in
2001(Meuwissen et al., 2001). The first SNPs assay for dairy cattle was
marketed in December 2007 (Van Tassell et al., 2008). The first genomic
evaluation was carried out in the Netherlands in 2006, and the first official
evaluation in the early 2009 in North America (Wiggans et al., 2009b).
During this period CONAFE and the national breeding programs realized the

significance of GS and the necessity to implementing it.
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The Spanish GS program started in 2011 with an agreement between the
breeders association and the progeny test programs with the inclusion of a
scientific partner (INIA) and the support of the Spanish government for the
genotyping of 2,000 reference bulls. In addition an agreement was signed
with Xenetica Fontao to become one of the labs performing genotyping. In
the same year Spain joined the Eurogenomics consortium that shares over

22,000 genotypes of progeny tested bulls.

The progeny testing programs provide bull genotypes while CONAFE was
in charge of phenotyping and controling the process, the scientific partner
was in charge of the development of genomic evaluation methodology
including imputation, and reliability estimation of genomic values. The
studies carried out in this thesis were considered for the implementation of
the genomic program. The R-Boosting method was developed and
implemented. Currently, the first official genomic evaluation has been
carrying out using this algorithm and results have been validated by
Interbull. The strong reduction in computing requirements achieved by the
proposed modification of the algorithm allowed use the Eurogenomics

population as RP efficiently. Computation times per trait averaged 18 hours.

Beagle was the software selected for routine imputations based on the results
of this thesis and other pilot studies carried out by the author. Since October
2012, LD genotypes are monthly imputed to 50K density in a previous step
to genomic evaluation. LD chips have been used for preselection of young
bulls by the Al centers but also for the selection of cows and heifers as bull

dam candidates.

Since the availability of a large RP of progeny tested bulls, genotyping
strategies involving females as RP was no longer a priority for primary traits,
but it could be valuable for the inclusion of new traits in the breeding

program. The key of a breeding program for an A.L. center is at the selection
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of future bull dams. Genomics can provide an increase in the number of

candidate dams and the reliability of their genetic merit.

First genomic evaluations were carried out for those traits included in the
Chapter 4 of this thesis and were used for Al centers in September 2011. The
Eurogenomic population was included in November 2011, and the first
complete genomic evaluation for those traits included in the Spanish index
(ICO) was carried out in February 2012. In May 2012 Spanish genomic
evaluation for protein yield was validated by Interbull. Finally, on November
30™ 2012, the first official genomic evaluations were published on-line by

CONAFE (http://www.conafe.com/noticias/20121130a.htm). Official

genomic evaluations were published as GEBV, blending DGV estimated
using R-Boosting and traditional EBV from traditional evaluations. Weights
of both sources of information take into account the reliability of the
breeding value over the reliability of the GEBV. Reliability of the GEBV
was calculated as the original reliability of the EBV plus reliability gain due

to genomic predictions.

Effects of genomics in dairy selection
Use of young bulls evaluated based on their genomic information

Genomic selection has modified the dairy cattle market, some progeny
programs have reduced the number of bulls to approximately one half of the
number previously tested per year (Spelman et al., 2012). This reduction
could lead to lower accuracies in the future if the number of recently proven
sires in the RP decreases (Lillehammer et al., 2011). Bulls entering the
progeny testing are previously genomically selected from large groups of

genotyped candidates.

Those pre-candidates are calves born from elite sires and top pedigree, or

genotyped cows. In some cases, the number of young bulls sampled
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(genotyped) has already increased dramatically, and there is a strong trend
within breeding companies of purchasing bull dams to ensure
exclusivity (Diirr and Philipsson, 2012). Other programs have focused on
genomic selection, and sons of outstanding top genomic young bulls are
retained. Simulation studies suggest greater genetic response following the
second strategy (Lillechammer et al., 2010; Pryce and Daetwyler, 2012).
However, lower relationship between these young bulls and the RP implies
lower accuracy of DGV. In addition, it must be taken into account that initial
results have shown that some genomic estimates were over-estimated
(Spelman et al., 2012). Especially in the case of outstanding genomic values
of young bulls some shrinkage over the average is expected when new
information is added. Schefers and Weigel (2012) suggested the use of teams

of genomic young bulls to avoid the risk of low individual accuracy.

In some countries such as New Zealand, over 40% of the inseminations are
made from genomically selected bulls. This proportion is consistent with the
rate of use of young bulls evaluated based on their genomic information in a
number of other countries, including Australia and Ireland (Cromie et al.,
2012). In France, a formal progeny test is no longer undertaken and 70% of
inseminations are currently made from genomically selected young bulls. It
is expected that, through time, other dairy breeding schemes will move to
this scenario once a greater degree of confidence is reached with genomic
technology. However genomic selection requires strong recording schemes
to fulfill expectations. Modifying current testing process does not imply to

avoid data recording but just the opposite.

Female genotyping

Some programs decide pre-screening more young bulls instead of elite dam
(Spelman et al., 2012). However, both paths are used for some programs. For

instances, Ireland started an initiative in 2012 encouraging farmers, through
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a slightly reduced cost, to genotype maiden heifers with the view of
including them in the training population from 2013. Heifers were targeted
to avoid any possible selection bias since only high producing fertile cows
remain to later lactations. Some Spanish testing programs routinely search
top national females as bull dam candidates. To include them in the genomic
program could be appealing in the near future. As the number of proven
bulls may be limited in the near future, the potential use of females, with
their own performance records, to estimate marker effects becomes
increasingly important, especially in countries with small populations.
Simulated studies show that the inclusion of female phenotypic and genomic
information increase the rate of genetic gain, compared with a traditional
BLUP breeding program. The generation interval of the males also decreases

(Mc Hugh et al., 2011).

Genotyped cows provide less biased prediction that can enhance the
selection of bull dams (Bouquet and Juga). Combined with biotechnological
techniques as multiple ovulation and embryo transfer (MOET), this
improvement could be maximized. However, inbreeding rate also increases

(Pryce et al., 2010).

It must be noted, dairy cattle genetic market is highly globalize. However,
only males are routinely compared through MACE by Interbull (Uppsala
Sweden). Preselection of bull dams are typically based on national
evaluation, own performances, deeply knowledge of their pedigrees and
intuition. Currently GS, provides the opportunity to compare objectively

cows worldwide. This is a great advance due GS.

Genomic selection in farms

Selection decisions
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Based on simulation studies, Weigel et al. (2012) concluded that on
commercial dairy farms selection and culling decision could be more
successful using genomic testing especially for selection of heifers. However
the expected gain depends on selection intensity applied in each farm.
Genomic selection will be more advantageous for animals with missing or
incomplete pedigree and also for those farms with lower replacement
requirements. Up to now, it is not the case of the Spanish dairy cattle
population. Expected gains for lactating cows that had phenotypes don’t
clearly reimburse costs of genotyping. Cost effective genotyping strategies
include pedigree index presorting by traditional parent average and genotype

the set of heifers were selection should be made.

To make genomic selection feasible at commercial farm level, genotyping
costs should be affordable, low density genotypes and imputations as shown
in Chapter 4 of the thesis should be considered. Reliability of genomic

values after imputation allows confident selection decisions.

At farm level, the incomes are based on milk sales. The breeders look for a
bull that compensates the weakness of the cow to produce a replacement
heifer. GS could be interesting when the replacement ratio is high and

breeding decision must be accurate.

Inbreeding

Simulation studies showed that genomic breeding programs have the
potential of decreasing the rate of inbreeding compared with conventional
selection methods (Daetwyler et al., 2007). However, first results from
realized performance show that inbreeding is increasing since genomic

selection is available in Canada (Schenkel, 2012).

Increases in inbreeding could be minimized through genomic optimal

contribution selection (De Cara et al., 2011) or mating programs based on
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optimal selection (gain & inbreeding) and minimum coancestry (Toro and
Varona, 2010). Female’s genotyping facilitates the identification of the least
related animals more accurately than the traditional relationship matrix, with
lower rates of inbreeding associated with the genotyping of a large number

of females (Mc Hugh et al., 2011).

Genomic mating programs

Since genomic evaluations are routinely carried out, the dairy cattle industry
should optimize the use of this new information. Next challenge in a
genomic program is to optimize mating programs to maximize genetic gain

and international competitiveness.

Traditional matings programs have been an important breeding tool for dairy
cattle farmers in Spain. For instance the ABEREKIN mating program is run
for more than 100,000 females per year. Afterward, ASCOL, XENETICA
FONTAO and CONAFE have developed their own mating programs.
Genomics mating programs favors finding the ideal sire to mate to a given
cow (Cole and VanRaden, 2010). To cope with this goal, SNPs effects for a
given trait and their respective positions need to be estimated or known,
providing insight of the genomic areas of greater interest. This knowledge
would allow designing matings with the aim to obtain the interesting
combinations from the most complementary parents (Weigel and Cowan,

2009).

It is possible to conduct genomic evaluations at the chromosome level rather
than of the whole genome, even by regions within a chromosome. In low
prolific species, multiple ovulation and embryo transfer programs acquire a
greater importance to increase the probability of obtaining the desired
combination for each mating. Currently, ‘“velo-genetics” or “whizzo-
genetics” are not implanted, but they may become a reality soon. This

programs consist on genotyping embryos or oocites to make the selection on
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them and increase the genetic response by further reduction of the generation
interval (Meuwissen, 2003). Other applications of genomic mating program
include the potential use of dominance and epistatic effects on the

commercial animals, or the more convenient combination in crossbreeding.
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In this thesis the fundamental steps for the implementation of a genomic

selection program in dairy cattle have been studied and Spanish genomic

reference population has been evaluated. Final conclusions of the thesis are:

1)
2)

3)

4)

5)

6)

7)

8)

9)

Female genotypes are valuables as reference population.

If females are genotyped as reference population, predictive ability
depends largely on the genotyping strategy.

To genotype just the top ranking cows as reference population
produce poor predictive ability.

Predictive ability is notably enhanced if cows in the opposite tail of
the distribution are also included.

Machine learning algorithms can be used to deal with the curse of
dimensionality, and computational limitations when a large number
of individuals have genotypic information.

Random-Boosting algorithm is an efficient method to calculate
additive genomic breeding values using high-density SNP
information and large data sets.

Random-Boosting predictions resulted especially competitive in
terms of mean prediction error and coefficient of the regression of
realized DRP on estimated DGV. In addition, this methodology also
produces low mean squared error estimates.

The use of less expensive low density chips and posterior imputation
is an efficient strategy for increase the number of genotypes and
therefore, multiply the benefits of genomics.

The effect of imputation from 6K to 50K is minimal in terms of

future predictive ability and selection decisions.

10) Accurate imputations can be performed from 50K to 700K density

using small numbers of ultra high density genotypes as reference.

11) Genotypes imputed to HD enhance genomic selection in some

scenarios when adequate methods for genomic evaluation are used.
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In summary, to genotype the most informative animals as reference
population, predict genomic values using an appropriate methodology in
terms of prediction ability and exploit the advantages of imputation methods
are prerequisites to maximize the profitability of a genomic selection

program in dairy cattle.
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