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Genomic selection is producing profound changes in dairy cattle markets 

since reliable breeding values, which double the reliability of the pedigree 

index, can be obtained earlier in an animal’s life. As a result, genetic gains of 

properly designed genomic programs are considerably larger than genetic 

gains obtained with traditional approaches. The industry has introduced this 

new tool all around the world faster than any other previous improvement.  

This thesis contains six chapters, in which initial stages for the 

implementation of genomic selection program in Spanish Holstein 

population were studied using simulations and real data. In Spain,  the initial 

interest began in 2008 (González-Recio et al., 2008), when the results 

obtained by VanRaden, (2008) were used to involve the Spanish industry in 

genomic selection. This research has been used to obtain the official 

genomic breeding values and implement the imputation of genotypes. 

The global aim of this thesis was to contribute practical recommendations 

for implementing genomic selection in the Spanish dairy cattle. The specific 

objectives were: (1) To study alternative genotyping strategies for small 

populations, (2) to develop and validate methods for the evaluation of large 

data sets of genotypes, and (3) to study the effect of imputation on predictive 

ability. 

The main topics with respect to genomic selection in dairy cattle were 

discussed in chapter 1 including: genetic and statistical aspects underlying 

genomic selection, design of proper reference populations (RP), review of 

methodology for genome-assisted evaluation, imputation, and 

implementation of genomic selection in dairy cattle breeding programs. 

Breeding values with medium high accuracies are now available early in the 

life of the animals. This is modifying one of the traditional principles of 

dairy markets: the strong preference for highly reliable bulls.  
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In chapter 2, a simulation study was carried out comparing female-selective 

genotyping strategies with traditional pedigree index and a bull RP. The 

Spanish male RP has 1,600 genotypes, which is not large enough to provide 

reliable predictions. Alternatives should be evaluated to improve predictive 

ability. The accuracy of predicted genomic breeding values using as 

reference animlas in both extrems of the phenotypic distribution was better 

than the accuracy obtained using other strategies (0.50 and 0.63 Pearson 

correlation units using yield deviations as phenotype and 0.48 and 0.63 using 

breeding values in low- and medium-heritability scenarios, respectively, 

using 1,000 genotyped cows). When 996 genotyped bulls were used as the 

training population, the use of progeny tested bulls as reference population 

led to accuracies of 0.48 and 0.55 for low- and medium-heritability traits, 

respectively. The most informative strategy involved genotyping of females 

that exhibited upper and lower extreme values within the distribution. 

Including just top animals resulted in poor results. 

Several methods for implementing genome assisted evaluations were 

compared in Chapter 3. Methods including marker regression included 

Bayesian methods (Bayes-A, Bayesian LASSO) and Machine Learning 

approaches as Random Boosting (R-Boost). G-BLUP was also utilized using 

the genomic relationship matrix. The Spanish RP was used to compare those 

methods in terms of predictive ability and bias. Genomic predictions were 

more accurate than traditional pedigree indices for predicting future progeny 

test results of young bulls. The gain in accuracy, due to inclusion of genomic 

data, varied by trait and ranged from 0.04 to 0.42 Pearson correlation units. 

Results averaged across traits showed that Bayesian LASSO had the highest 

accuracy with an advantage of 0.01, 0.03 and 0.03 points in Pearson 

correlation compared with R-Boost, Bayes-A, and G-BLUP, respectively. 

The B-LASSO predictions also showed the least biased predictions (0.02, 

0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP, 
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respectively), measured as the mean difference between genomic predictions 

and progeny test results. The R-Boost algorithm provided genomic 

predictions with regression coefficients closer to unity, for four out of five 

traits and also resulted in mean squared error estimates that were 2%, 10%, 

and 12% smaller than B- LASSO, Bayes-A, and G-BLUP, respectively. R-

Boost seemed to be a competitive marker regression methodology in terms 

of predictive ability. 

Chapter 4 describes the R-Boost algorithm tested in Chapter 3 for genomic 

evaluations in large data sets. After joining the Eurogenomics consortium 

with more than 22,000 bulls in the RP, a feasible method with reasonable 

computation times, and no impaired predictive ability was required. The 

random boosting uses a random selection of markers to add a subsequent 

weak learner to the predictive model. Optimization of the algorithm and 

behavior of tuning parameters was tested in real dairy cattle data. Those 

tuning parameters control the percentage of single nucleotide 

polymorphisms (SNP) sampled per iteration and the level of shrinkage over 

the regression coefficient estimation. The proposed modification of the 

original boosting algorithm can be run in 1% of the time used with the 

original algorithm, and with negligible differences in accuracy and bias. 

In Chapter 5, genotypes from the GoldenGate Bovine 3K and BovineLD 

BeadChip for 834 animals were imputed to a BovineSNP50v2 BeadChip 

using Beagle. Those genotypes were subsequently imputed to the BovineHD 

BeadChip. Predictive ability of imputed and native genotypes as RP in 

genome-assisted evaluations was compared using G-BLUP and R-Boost. 

Imputed low density genotypes achieved similar predictive ability than 

native genotypes. However, marginal better selection efficiency was 

obtained after imputation to HD (0.002 greater Pearson correlation units). 

The largest improvements were found for Days Open after imputation to HD 

genotypes (up to 0.06 greater Pearson correlation units). R-Boost was more 



Summary 

- 13 - 

sensitive to marker density than G-BLUP. Both methods performed similarly 

except for Fat Percentage, where R-Boost outperformed G-BLUP by up to 

0.20 Pearson correlation units. The predictive ability of certain traits may be 

improved either by imputing genotypes to HD or by utilizing a method that 

takes into account the genetic architecture of the trait.  

Finally, in chapter 6 a general discussion links the studies previously 

covered with the implementation of genomic selection in the Spanish dairy 

cattle. The first Spanish RP with above 1,600 progeny tested bulls was tested 

as a proper source of genomic information in chapter 4 and was used for 

comparing methods and scenarios in chapters 3, 4 and 5. First genomic 

evaluation was carried out for those traits included in Chapter 4 of this thesis 

and results were used for AI centers in September 2011. The Eurogenomics 

population was included on November 2011. First complete genomic 

evaluation for the 26 traits included in the Spanish index (ICO) was carried 

out in February 2012 using Random Boosting as described in chapter 4. In 

May 2012 Spanish genomic evaluation for protein yield was validated by 

Interbull. Finally, on November 30th 2012, first official genomic evaluations 

were published on-line by CONAFE 

(http://www.conafe.com/noticias/20121130a.htm). 

http://www.conafe.com/noticias/20121130a.htm
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La selecció genòmica està canviant profundament el mercat del boví de llet. 

Actualment, és possible obtenir valoracions genètiques fiables d'animals 

molt joves sense necessitat de disposar del fenotip propi o el de les seves 

filles. Per tant, la resposta genètica d'un programa genòmic ben dissenyat 

supera netament a la selecció tradicional. 

Aquesta tesi es composa de sis capítols en els que s'estudia l'establiment de 

les bases per a implementar un programa de selecció genòmica en el boví de 

llet espanyol. Amb aquesta finalitat, s'han realitzat estudis de simulació i 

valoracions genòmiques amb dades reals de la primera població de 

referència nacional. 

L'objectiu principal d'aquesta tesi és contribuir a la implementació de la 

selecció genòmica en el boví de llet espanyol. Els objectius específics són: 

(1) Estudiar alternatives de genotipat en poblacions reduïdes de boví lleter. 

(2) Desenvolupar i validar metodologia per a l'avaluació de grans quantitats 

de genotips. (3) Estudiar l'efecte dels processos d'imputació de genotips en 

l'habilitat predictiva dels genotips resultants. 

Les principals qüestions relacionades amb la selecció genòmica en boví 

lleter van ser discutides el capítol 1 incloent: aspectes estadístics i genètics 

en què es basa la selecció genòmica, disseny de poblacions de referència 

adequades, revisió de la metodologia desenvolupada per a l'avaluació, 

disseny i metodologia de programes d'imputació i implementació de la 

selecció genòmica en boví de llet a nivell de programa de selecció, centre 

d'inseminació i granja comercial. La selecció genòmica està revolucionant el 

mercat del boví de llet, ja que és possible aconseguir valors genètics molt 

més precisos d'animals joves, en comparació amb els obtinguts mitjançant 

índexs de pedigrí tradicionals. Aquesta millora està modificant un dels 

principis tradicionals del mercat de boví de llet com era la preferència d'ús 
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de toros amb altes fiabilitats respecte animals amb valors genètics a priori 

superiors. 

En el capítol 2 es va realitzar un estudi de simulació comparant estratègies 

de genotipat selectiu en poblacions de femelles enfront de l'ús de selecció 

tradicional o selecció genòmica amb una població de referència de mascles. 

La població espanyola estava formada per una mica més de 1,600 toros amb 

prova de progènie. Aquest mida no és, en principi, suficient per obtenir 

prediccions genòmiques d'alta fiabilitat. Per tant, calia avaluar diferents 

alternatives per incrementar l'habilitat predictiva de les avaluacions. Les 

estratègies que inclouen el genotipat com a població de referència dels 

animals en ambdós extrems de la distribució permetien millorar la precisió 

de l'avaluació. Els resultats usant 1,000 genotips van ser 0.50 per al caràcter 

de baixa heretabilitat i 0.63 per al d'heretabilitat mitjana quan la variable 

dependent fou el fenotip ajustat. Quan varen usar-se valors genètics com a 

variable dependent, les correlacions van ser 0.48 i 0.63, respectivament. Per 

als mateixos caràcters, una població de 996 mascles va obtenir correlacions 

de 0.48 i 0.55 en les prediccions posteriors. L'estudi conclou que l'estratègia 

de genotipat que proporciona la major correlació és la que inclou les 

femelles de les dues cues de la distribució de fenotips. D'altra banda es fa 

evident que la mera inclusió de les femelles d'èlit, que són les habitualment 

genotipades, produeix resultats molt pobres en la predicció de valors 

genòmics. 

En el capítol 3, el Random Boosting és comparat amb altres mètodes 

d'avaluació genòmica utilitzant metodologia Bayessiana (Bayes-A i LASSO 

Bayessià) i amb un G-BLUP usant la matriu genòmica. La població de 

referència espanyola va ser utilitzada per comparar aquests mètodes en 

termes de precisió i biaix. Les prediccions genòmiques van ser més precises 

que l'índex de pedigrí tradicional a l'hora de predir els resultats de futurs test 

de progènie. Els guanys obtinguts en precisió derivats de l'ús de la selecció 
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genòmica depenen del caràcter avaluat i varien entre 0.04 i 0.42 unitats de 

correlació de Pearson. Els resultats promig entre caràcters demostraren que 

el LASSO Bayessià va obtenir majors correlacions superant al Random 

Boosting, Bayes-A i BLUP genòmic en 0.01, 0.03 i 0.03 unitats, 

respectivament. Les prediccions obtingudes amb el LASSO també van 

mostrar menys desviacions respecte la mitja, 0.02, 0.03 i 0.10 menys que 

Bayes-A, R Boost i G-BLUP, respectivament. Les prediccions usant 

Random Boosting van obtenir coeficients de regressió més propers a la 

unitat que la resta de mètodes i els errors mitjans quadràtics van ser un 2%, 

10% i 12% inferiors als obtinguts a partir del B-LASSO, Bayes-A i G -

BLUP, respectivament. L'estudi conclou que el Random Boosting és una 

metodologia aplicable en selecció genòmica i competitiva en termes 

d'habilitat predictiva. 

En el capítol 4 l'algoritme de machine learning Random Boosting avaluat en 

el capítol 3 és descrit i implementat per a selecció genòmica i adaptat a 

l'avaluació eficient de grans bases de dades. Després de la incorporació al 

consorci Eurogenomics, el programa genòmic espanyol va passar a disposar 

de més de 22,000 toros provats com a població de referència. Es va fer 

necessària doncs, l'implementació d'un mètode capaç d'avaluar aquest gran 

conjunt de dades en un temps raonable. El nou algoritme anomenat Random 

Boosting realitza de forma seqüencial una selecció aleatòria d'SNPs a cada 

iteració sobre els quals s'aplica un predictor feble. L'algoritme va ser avaluat 

sobre les dades reals de boví de llet emprades en el capítol 3 i van estudiar-se 

més en profunditat el comportament dels paràmetres de sintonització. 

Aquesta proposta de modificació del Boosting permet obtenir prediccions 

sense pèrdua de precisió ni increments de biaix emprant només un 1% del 

temps de computació original. 

En el capítol 5 s'avalua l'efecte d'usar genotips de baixa densitat imputats 

mitjançant el programari Beagle pel que fa a la seva posterior habilitat 
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predictiva quan aquests són incorporats a la població de referència. Amb 

aquesta finalitat, es varen utilitzar dos mètodes d'avaluació: Random 

Boosting i un BLUP amb matriu genòmica. Animals dels que s'en coneixia 

els SNPs inclosos en els xips GoldenGate Bovine 3K i BovineLD BeadChip 

varen ser imputats fins a conèixer els SNP's inclosos en el BovineSNP50v2 

BeadChip. Posteriorment, un segon procés d'imputació va permetre obtenir 

els SNP's inclosos en el BovineHD BeadChip. Els genotipats a baixa densitat 

després de ser imputats, van obtenir similar capacitat predictiva que els 

originals en densitat 50K. Tanmateix, només és va obtenir una petita millora 

(en 0.002 unitats de Pearson) a l'imputar HD. El major increment es va 

obtenir per a dies oberts on les correlacions en el grup de validació varen 

augmentar en 0.06 unitats de Pearson quan es van emprar els genotips 

imputats a HD. En funció de la densitat de genotipat, l'algoritme Random 

Boosting mostra més diferències que el BLUP genòmic. Ambdós mètodes 

varen obtenir resultats similars tret del cas d' percentatge de greix, on les 

prediccions obtingudes amb el Random Boosting varen ser superiors a les 

del G-BLUP en 0.20 unitats de correlació de Pearson. L'estudi conclou que 

la capacitat predictiva d'alguns caràcters pot millorar imputant la població de 

referència a HD i usant mètodes d'avaluació que siguin capaços d'adaptar-se 

a les diferents arquitectures genètiques possibles. 

Finalment, en el capítol 6 es duu a terme una discussió general dels estudis 

presentats en els capítols anteriors que s'enllacen amb la implementació de la 

selecció genòmica en el boví lleter espanyol, desenvolupada paral·lelament a 

aquesta tesi doctoral. La primera població de referència, amb uns 1,600 

toros, va ser avaluada en el capítol 4 i va ser usada per comparar els diferents 

mètodes i escenaris proposats en els capítols 3, 4 i 5. La primera avaluació 

genòmica obtinguda per als caràcters inclosos en el capítol 4 d'aquesta tesi 

va estar disponible per als centres d'inseminació inclosos en el programa al 

mes de setembre del 2011. La població d'Eurogenomics es va incorporar al 
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novembre del mateix any, completant la primera avaluació per als caràcters 

inclosos en l'índex de selecció ICO al febrer de 2012 emprant el Random 

Boosting descrit en el capítol 3. El maig de 2012 les avaluacions del caràcter 

Proteïna van ser validades per INTERBULL i finalment el 30 novembre 

2012 les primeres avaluacions genòmiques oficials van ser publicades on-

line per la federació de ramaders CONAFE 

(http://www.conafe.com/noticias/ 20121130a.htm). 
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La selección genómica está cambiando profundamente el mercado del 

vacuno de leche. En la actualidad, es posible obtener una alta precisión en 

las valoraciones genéticas de animales muy jóvenes sin la necesidad del 

fenotipo propio o el de sus hijas. Por tanto, la respuesta genética de un 

programa genómico bien diseñado supera netamente a la selección 

tradicional. Esta mejora está modificando uno de los principios tradicionales 

del mercado de vacuno de leche como era la preferencia de uso de toros con 

altas fiabilidades frente a otros animales con valores genéticos a priori 

superiores. 

Esta tesis contiene seis capítulos en los cuales se estudian de las bases para 

la implementación del programa de selección genómica en el vacuno de 

leche español. Para ello se realizaron estudios de simulación y valoraciones 

genómicas con datos reales de la primera población nacional de referencia. 

El objetivo principal de esta tesis es contribuir a la implementación de la 

selección genómica en el vacuno de leche español. Los objetivos específicos 

son: (1) Estudiar alternativas de genotipado en poblaciones reducidas de 

vacuno lechero. (2)  Desarrollar y validar metodología para la evaluación de 

grandes cantidades de genotipos. (3) Estudiar el efecto de los procesos de 

imputación de genotipos en la capacidad predictiva de los genotipos 

resultantes. 

Las principales cuestiones relacionadas con la selección genómica en vacuno 

lechero fueron discutidas en el capítulo 1 incluyendo: aspectos estadísticos y 

genéticos en los que se basa la selección genómica, diseño de poblaciones de 

referencia, revisión del estado del arte en cuanto a la metodología 

desarrollada para evaluación genómica, diseño y métodos de los algoritmos 

de imputación, e implementación de la selección genómica en vacuno de 

leche a nivel de programa de selección, centro de inseminación y de granja 

comercial.  
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En el capítulo 2 se realizó un estudio de simulación comparando estrategias 

de genotipado selectivo en poblaciones de hembras frente al uso de selección 

tradicional o selección genómica con una población de referencia de machos. 

La población de referencia española estaba formada en principio por algo 

más de 1,600 toros con prueba de progenie. Este tamaño no es, en principio, 

suficiente para obtener predicciones genómicas de alta fiabilidad. Por tanto, 

debían evaluarse diferentes alternativas para incrementar la habilidad 

predictiva de las evaluaciones. Las estrategias que consisten en usar como 

población de referencia los animales en los extremos de la distribución 

fenotípica permitían mejorar la precisión de la evaluación. Los resultados 

usando 1,000 genotipos fueron 0.50 para el carácter de baja heredabilidad y 

0.63 para el de heredabilidad media cuando la variable dependiente fue el 

fenotipo ajustado. Cuando se usaron valores genéticos como variable 

dependiente las correlaciones fueron 0.48 y 0.63 respectivamente.  Para los 

mismos caracteres, una población de 996 machos obtuvo correlaciones de 

0.48 y 0.55 en las predicciones posteriores. El estudio concluye que la 

estrategia de genotipado que proporciona la mayor correlación es la que 

incluye las hembras de ambas colas de la distribución de fenotipos. Por otro 

lado se pone de manifiesto que la mera inclusión de las hembras élite que 

son las habitualmente genotipadas en las poblaciones reales produce 

resultados no satisfactorios en la predicción de valores genómicos. 

En el capítulo 3, el Random Boosting (R-Boost) es comparado con otros 

métodos de evaluación genómica como Bayes-A, LASSO Bayesiano y G-

BLUP. La población de referencia española y caracteres incluidos en las 

evaluaciones genéticas tradicionales de vacuno lechero fueron usados para 

comparar estos métodos en términos de precisión y sesgo. Las predicciones 

genómicas fueron más precisas que el índice de pedigrí tradicional a la hora 

de predecir los resultados de futuros test de progenie como era de esperar. 

Las ganancias en precisión debidas al empleo de la selección genómica 
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dependen del carácter evaluado y variaron entre 0.04 (Profundidad de ubre) 

y 0.42 (Porcentaje de grasa) unidades de correlación de Pearson. Los 

resultados promediados entre caracteres mostraron que el LASSO Bayesiano 

obtuvo mayores correlaciones superando al R-Boost, Bayes-A y G-BLUP en 

0.01, 0.03 y 0.03 unidades respectivamente. Las predicciones obtenidas con 

el LASSO Bayesiano también mostraron menos desviaciones en la media, 

0.02, 0.03 y 0.10 menos que Bayes-A, R-Boost y G-BLUP, respectivamente. 

Las predicciones usando R-Boost obtuvieron coeficientes de regresión más 

próximos a la unidad que el resto de métodos y los errores medios 

cuadráticos fueron un 2%, 10% y 12% inferiores a los obtenidos a partir del 

B-LASSO, Bayes-A y G-BLUP, respectivamente. El estudio concluye que 

R-Boost es una metodología aplicable a selección genómica y competitiva 

en términos de capacidad predictiva. 

En el capítulo 4, el algoritmo de machine learning R-Boost evaluado en el 

capítulo 3 es descrito e implementado para selección genómica adaptado a la 

evaluación de grandes bases de datos de una forma eficiente. Tras la 

incorporación en el consorcio Eurogenomics, el programa genómico español 

pasó a disponer de más de 22,000 toros probados como población de 

referencia, por tanto era necesario implementar un método capaz de evaluar 

éste gran conjunto de datos en un tiempo razonable. El nuevo algoritmo 

denominado R-Boost realiza de forma secuencial un muestreo aleatorio de 

SNPs en cada iteración sobre los cuales se aplica un predictor débil. El 

algoritmo fue evaluado sobre datos reales de vacuno de leche empleados en 

el capítulo 3 estudiando más en profundidad el comportamiento de los 

parámetros de sintonización. Esta propuesta de modificación del Boosting 

puede obtener predicciones sin perdida de precisión o incrementos de sesgo 

empleando tan solo un 1% del tiempo de computación original.  

En el capítulo 5 se evalúa el efecto de usar genotipos de baja densidad 

imputados con el software Beagle en cuanto a su posterior habilidad 
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predictiva cuando son incorporados a la población de referencia. Para ello se 

emplearon dos métodos de evaluación R-Boost y un BLUP con matriz 

genómica. Animales de los que se conocían los SNPs incluidos en los chips 

GoldenGate Bovine 3K y BovineLD BeadChip, fueron imputados hasta 

conocer los SNPs incluidos en el BovineSNP50v2 BeadChip. 

Posteriormente, un segundo proceso de imputación obtuvo los SNPs 

incluidos en el BovineHD BeadChip. Tras imputatar desde dos genotipados 

a baja densidad, se obtuvo similar capacidad predictiva a la obtenida 

empleando los originales en densidad 50K. Sin embargo, sólo se obtuvo una 

pequeña mejora (0.002 unidades de Pearson) al imputar a HD. El mayor 

incremento se obtuvo para el carácter días abiertos donde las correlaciones 

en el grupo de validación aumentaron en 0.06 unidades de Pearson las 

correlaciones en el grupo de validación cuando se emplearon los genotipos 

imputados a HD. En función de la densidad de genotipado, el algoritmo R-

Boost mostró mayores diferencias que el G-BLUP. Ambos métodos 

obtuvieron resultados similares salvo en el caso de porcentaje de grasa, 

donde las predicciones obtenidas con el R-Boost fueron superiores a las del 

G-BLUP en 0.20 unidades de correlación de Pearson. El estudio concluye 

que la capacidad predictiva para algunos caracteres puede mejorar 

imputando la población de referencia a HD así como empleando métodos de 

evaluación capaces de adaptarse a las distintas arquitecturas genéticas 

posibles. 

Finalmente en el capitulo 6 se desarrolla una discusión general de los 

estudios presentados en los capítulos anteriores y se enlazan con la 

implementación de la selección genómica en el vacuno lechero español, que 

se ha desarrollado en paralelo a esta tesis doctoral. La primera población de 

referencia con unos 1.600 toros fue evaluada en el capítulo 4 y fue usada 

para comparar los distintos métodos y escenarios propuestos en los capítulos 

3, 4 y 5. La primera evaluación genómica obtenida para los caracteres 
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incluidos en el capítulo 4 de esta tesis estuvo disponible para los centros de 

inseminación incluidos en el programa en septiembre de 2011. La población 

de Eurogenomics se incorporó en Noviembre de dicho año, completándose 

la primera evaluación para los caracteres incluidos en el índice de selección 

ICO en Febrero de 2012 empleando el R-Boost descrito en el capítulo 3. En 

mayo de 2012 las evaluaciones del carácter proteína fueron validadas por 

Interbull y finalmente el 30 de Noviembre del 2012 las primeras 

evaluaciones genómicas oficiales fueron publicadas on-line por la federación 

de ganaderos CONAFE (http://www.conafe.com/noticias/20121130a.htm). 

 

. 
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Infinitesimal model and genomic selection 

Animal breeding aims to improve economic productivity of future 

generations of domestic species through selection under a changing cost and 

income scenario. Most of the traits of economic interest in livestock have a 

complex and quantitative expression i.e. are influenced by a large number of 

genes and affected by environmental factors. Statistical analysis of 

phenotypes and pedigree information allows estimating the genetic merit 

(breeding values) of the selection candidates based on Fisher’s infinitesimal 

model (Fisher, 1919). The infinitesimal model assumes that quantitative 

traits are determined by an infinite number of loci with very small effects on 

these characters. It is assumed that these quantitative trait loci (QTL) are 

homogeneously distributed throughout the genome. The population mean of 

quantitative traits is modified choosing the best genotypes in the population 

using the predicted breeding values obtained with the Best Linear Unbiased 

Predictor (BLUP) methodology (Henderson, 1975). The genetic 

improvement obtained with this traditional quantitative method is due to the 

average probability of sharing certain variants of genes between relatives.  

Nowadays, thanks to the advances in the molecular techniques, a large 

number of genetic markers are known and can be individually genotyped. 

Different authors have proposed strategies to use and integrate these new 

sources of information (Fernando and Grossman, 1989; Lande and 

Thompson, 1990). Marker-assisted selection  provided options for extra 

gains by increasing selection accuracy when a sufficiently large number of 

markers are used (Villanueva et al., 2005). 

The sequencing of the human genome, completed in 2003, followed by those 

of several animal species as cattle (Elsik et al., 2009), have paved the way to 

a new tool that uses genomic information of each animal. These modern 

sequencing techniques allow genotyping thousands of sources of variation 
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throughout the genome. Some of them may relate to the productive 

performance of the animals, their morphology or resistance to diseases. 

Some markers represent differences in chemical bases (Adenine, Cytosine, 

Guanine and Thymine) in certain positions of the DNA sequence. Those 

markers are known as SNP when differ in a single base. It is expected that 

some of those variations will be close to QTLs of interest. Therefore, SNPs 

are used as markers under the assumption that they will be inherited jointly 

to QTLs due to the existing linkage disequilibrium (LDQ) in the genome. 

Breeding values can be estimated through marker effects estimation 

considering all QTLs simultaneously. Those marker effects are assumed to 

be consistent across families. Selection based on this genomic predictions 

was named Genomic Selection (GS) (Haley and Visscher, 1998) and is 

becoming a new paradigm for genetics.  

The breeder equation under GS  

Genetic response 

The main advantage that genomics provides is the increment of the selection 

accuracy at an early age of the animal compared to traditional pedigree index 

(PI) when the own phenotype and/or pedigree are not available (Goddard, 

2009). This development is of great importance because it changes the 

reliability of the information available at the key moment when selection 

decisions have to be taken, such as: bulls to be progeny tested or marketed, 

replacement of heifers, cow culling and mating. 

Given the annuar genetic response equation: 

aiG
L
ρσ

∂ =
 



Chapter 1 

- 32 - 

where ∂ G is the expected annual genetic gain, i is the selection intensity 

applied, ρ is the accuracy of the evaluation, σa is the additive genetic 

standard deviation, and L the generation interval considered. 

The use of genomics has some effect on all terms of the equation: 

Accuracy and generation interval 

Genomic selection provides a greater ρ in comparison with the PI and a 

reduction of L as a higher ρ can be obtained at earlier ages of individuals 

(Dekkers, 2010). This improvement is of special interest for those programs 

based on the selection of highly reliable individuals, as it is the case in dairy 

cattle.  

The accuracy of GS depends, among other factors, on the LDQ between 

SNPs (Calus et al., 2008). LDQ is defined as the non-random association 

between the alleles at two different genome loci. LDQ can be caused by 

migration, mutation, selection or genetic drift in small populations, or any 

other event that may affect the genetic structure of the population. Sargolzaei 

et al. (2008) found averaged values for LDQ of 0.31 calculated as r2 (Hill 

and Robertson, 1968). Afterwards, Banos and Coffey, (2010) reported levels 

around 0.30 for r2 in a Holstein population, and concluded that this is the 

minimum level required for reliable prediction of genomic breeding values. 

High density arrays may provide enough LDQ between genome segments to 

trace all QTL affecting the traits of interest (Hayes, 2007). However, LDQ is 

decreasing if a recombination occurs in the meiosis previous to the 

development of the gametes of each new generation (Habier et al., 2009). To 

maintain the reliability of genomic predictions, new genotyped and 

phenotyped individuals should be included in the RP. The estimation of the 

chromosomal segment effects should be re-evaluated at least every three 

generations according to Hayes (2007).  
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The first results obtained with simulations were overly optimistic, showing 

accuracy of predictions higher than 0.80 (Meuwissen et al., 2001). A 

revolution in testing programs was proposed with the optimistic expectation 

that progeny testing cost could be reduced by 92% (Schaeffer, 2006). 

Besides this overoptimistic background, other factors should be taken into 

account for the field implementation of GS. An initial large investment in 

genotyping would be necessary. It is essential to maintain commercial farms 

involved in the data recording, which is a requirement for a correct 

estimation of SNPs effects. It must be pointed out also that many dairy 

farmers tend to use semen from proven bulls with high reliability for mating 

designs, for compensating weak points and deficiencies of their cows.  

Selection intensity 

Selection intensity could be incremented in the sire-sire or dam-sire paths 

due to more reliable information about the individuals or discriminating 

between full sibs. 

Genetic variability 

Finally, GS can reduce the emphasis on the family information in 

comparison with traditional breeding, which is related to a lower increase of 

inbreeding (Daetwyler et al., 2007).  Inbreeding increments are related to a 

reduction in genetic variability and therefore σ2
a, which may negatively 

affect the genetic gain. However, results are contradictory (Pedersen et al., 

2010), and there is a risk of dangerously speeding up inbreeding by sampling 

only the apparently best families and promoting the most profitable matings 

in the short term (Dürr and Philipsson, 2012).  

The state of the art genomic evaluations have not achieved the initially 

expected reliabilities (Pryce and Daetwyler, 2012). Genomic information 

improved the accuracies of genetic values equivalent to 11 daughters in a 



Chapter 1 

- 34 - 

traditional progeny test (VanRaden et al., 2009b). Under these assumptions, 

dairy cattle genomics is focused on pre-selection of candidates to be tested 

or marketed based on their genomic values (Lillehammer et al., 2010). 

Nevertheless, some young bulls evaluated based on their genomic 

information have been marketed due to outstanding genomic values, and 

some aggressive breeding strategies based on genomics have been proposed. 

Reference population and genotyping strategies 

The dairy cattle breeding market is highly competitive. Breeding programs 

not implementing these new tools may be disadvantaged compared to other 

competitors in a few years. The leading countries in dairy cattle sector have 

developed their genomic programs with different alternatives regarding 

methods and genotyping strategies. 

The first step in the implementation of GS is to create a RP of genotyped 

animals. It is not straightforward to determine what animals should be 

genotyped first. Most countries have genotyped proven bulls for that 

purpose. Other types of genotyped animals are not yet or less useful for the 

RP, for instance: young bulls waiting for progeny proof, elite females (bull 

dams or candidates), top ranking heifers, and production cows from the 

entire population (see cases of countries such as Denmark, Canada, Finland, 

Sweden, Unites States, Ireland, France or Holland).  

What is a reference population? 

The fundamental step in genomic selection is the collection of phenotypes 

(own or from progeny) and DNA samples from those genotyped animals. 

The “RP” is used to train a statistical model that estimates the effects of each 

SNP or genomic combinations thereof, on phenotypes. These estimates 

allow predict genomic breeding values for new individuals with the only 

source of information of their DNA (Dekkers, 2010).  
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Features of the reference population 

The characteristics of the RP, such as the population size or the type of 

animals, determine the accuracy of predicted genetic values of young 

animals (Hayes et al., 2009a; VanRaden et al., 2009b). Other aspects 

determining the predictive accuracy are: the reliability of the phenotypic 

information, the genetic relatedness of the population, both in the training 

and validation sets, or the genotyping density. The establishment of an 

appropriate RP is one of the key aspects in a genomic program. The strategy 

to include animals in the RP depends on the goal (Pérez-Cabal et al., 2012). 

For dairy cattle RPs, Saatchi et al, (2010) recommended to use reliable 

(>90%) progeny tested sires from recent generations rather than older bulls. 

Size of the reference population 

The required size of the RP is inversely proportional to the heritability of the 

trait and directly proportional to the effective population size (Goddard, 

2009). National populations could be enough for some traits with high h2, 

but not for traits with low h2. One of the challenges in small populations, and 

especially for low heritability traits is to increase the predictive accuracy 

obtained with genomic evaluations (VanRaden et al., 2009a).  

Different international collaboration consortia have emerged to increase the 

accuracy of genome-enhanced predictions for a successful implementation 

of genomic selection. The first association appeared between Canada and the 

United States to share genotypes and technical knowledge in 2008 with an 

initial population of around 17,000 genotypes (VanRaden et al., 2009a; 

Wiggans et al., 2011, 2008). Recently, Great Britain and Italy joined the 

consortium. The current size of the whole population is above 50,000 

genotypes including cows. Other European countries created the 

Eurogenomics consortium in 2009 (Holland, Germany, France, Finland, 

Sweden, Denmark). It incorporated Spain in 2011, and Poland in 2012. 
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Around 22,000 50K genotypes and more than 1,000 high density (HD) 

genotypes are currently shared between these countries. Other countries are 

currently working in cooperation programs (Cromie et al., 2012; de Roos et 

al., 2009; Lund et al., 2011). This implies sharing both genotypes and 

phenotypic records while maintaining the estimation procedures separately 

at the national centers or research partners in the case of the two main 

consortiums.  

The increment in reliability due to the RP size was estimated to range 

between 8% and 11% above the reliability obtained with the national RP 

using 15,996 sires from the Eurogenomics consortium (Lund et al., 2011). 

Larger RP will be necessary for multi-breed evaluations, as well as higher 

density arrays, to compensate for the greater genetic diversity. However, this 

should be confirmed in real population and strategies and methods should be 

developed for these particular cases. 

Predictive ability of genomics depends mainly on the size of the RP. To raise 

the number of animals used as reference has been the main objective of 

many programs. As progeny tested bulls are the most accurate source of 

information, to share their genomic information is the most successful 

strategy to enlarge the RP. However, for small populations without many 

reliable bulls or for those traits not routinely recorded, different alternatives 

should be considered. 

Reference populations closed or dynamics 

As mentioned above, the LDQ decays with the passing of generations. We 

should consider changes in allele frequencies, estimates of spurious effects 

and the possibility of emergence of new mutations in the population. The 

reliability of genomic evaluations is enhanced when the parents of the 

animals to be evaluated are included in the RP (Weigel et al., 2009). 
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The RP should be dynamic and remain open to the entry of new animals, 

thus it is important to maintain or create a good data recording scheme. 

Collaboration contracts with commercial farms have been suggested to 

optimize the volume and quality of this information (König, 2010). 

However, progeny testing schemes will continue to be of great importance in 

dairy cattle to reach high reliability, at least for the next years. 

Genotyping Strategies 

Most countries only have sires genotyped as RP (Loberg and Dürr, 2009). 

Bulls are a good and easy representation of the genetic structure of the 

population, and achieve high reliabilities due to the large amount of 

information generated by their daughters. They are important for the AI 

centers and spread most of the genetic improvement. Many programs have a 

limited number of highly reliable sires that could limit good genomic 

predictions (VanRaden et al., 2009a). The efficiency of the program could 

improve considering alternative selective genotyping. The inclusion of the 

most informative females should be evaluated for this purpose (Sen et al., 

2009; Spangler et al., 2008).  

Currently, the best females (bull dams candidates) have been genotyped in 

some countries (Loberg and Dürr, 2009), and some genomic evaluation 

systems (e.g., USA or  Australia) now include cows in their training 

population. (Pryce et al., 2012; Wiggans et al., 2011) However, preferential 

treatment of particular cows in the genomic predictions via their 

performance records has to be somehow corrected.  

Nieuwhof et al, (2012) showed that the inclusion of cows in a RP produced 

slight differences regarding bulls in terms of correlations with daughter 

performance. The main advantage of including sires and dams in the 

reference set was an improvement in regression coefficients for many traits, 

compared with both the PI and the genomic breeding values (DGV) from a 
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population composed only by sires. It was expected that bias might increase 

with the inclusion of cows in the reference set. Including cows with good 

quality records in the reference set resulted in better selection decisions for 

some traits. 

In a few years, several populations will have more cows than bulls 

genotyped. It can be hypothesized that the genotypes of large female 

populations are an alternative to improve the accuracy of the genomic 

evaluations. Females represent the larger portion within the Holstein 

population and most of the traits of economic interest are measured in them. 

The association between phenotype and genotype of the same animal should 

be greater than the association between a genotype and the averaged 

phenotypes of their progeny. A massive genotyping of females would allow 

capturing more genomic associations between markers and phenotypes. This 

genotyping could be combined with other strategies such as the genotyping 

at different densities and imputation of missing SNPs. Those designs allows 

to increase the size of the RP at a low cost (Habier et al., 2009; Weigel et al., 

2009, 2010b). 

Methods applied to genomic prediction  

The knowledge of the genome of an animal brings a new and 

complementary source of information to that previously available for 

selection. In such a situation, information is obtained for a large number of 

markers. However, only few thousand of individuals are genotyped leading 

to the curse of dimensionality problem also known as the “large p, small n” 

problem. This scenario generates an over-parameterization in traditional 

methods. Therefore it is necessary to develop, adapt and implement new 

methods in the genome-enhanced evaluations. 

Different approaches are currently used for estimating genomic values, and it 

is important to assess the performance of diverse methodologies and identify 
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the methods that provide the greatest predictive ability in a given population. 

Genomic prediction methods can be categorized as: 1) methods that regress 

phenotypic records on SNP markers directly, and 2) methods that compute 

genomic values as a function of the genomic relationship using a 

(co)variance structure between subjects (De los Campos et al., 2009). 

Methods based on marker regression estimate genomic values as a linear 

regression of phenotypes or pseudo-phenotypes on marker genotype codes as 

1μ β= + +y X e  

Where y is a vector of dependent variables, 1 is a vector of ones, μ is the 

population mean or intercept, X is a n × p matrix of codes (e.g., -1, 0, 1 for 

aa, aA, and AA genotypes, respectively) of n samples and p markers, β is a 

vector of allelic substitution effects for each marker, and e is a vector of 

residuals.  

As said previously, GS is carried out in n << p scenarios. Methods based on 

marker regression need to introduce some shrinkage on the estimation of 

marker effects. On the contrary, methods based on genomic matrix do not 

suffer from the large p small n problems, as the amount of unknown effects 

is generally not larger than in the traditional BLUP models (González-Recio 

et al., 2008).  

Below is an overview on the methods that have been proposed for genomic-

enhanced evaluations. 
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Least squares  

This approach does not make assumptions about the distribution of the 

markers as their effects are treated as fixed. It simply deals with more 

parameters to estimate than available data. Therefore, SNPs pre-selection 

through ordinary least squares regressions is commonly applied prior to the 

analyses. Those SNPs with larger effect are selected, assuming that the 

others do not have any effect on the considered trait (Meuwissen et al., 

2001). This methodology applied to genomic selection showed 

unsatisfactory results (Goddard and Hayes, 2007).  

BLUP (Ridge Regression) 

Here, a normal prior 2(0, )N βσI  is assigned to the marker effects (β). It must 

be noted this is not the traditional BLUP described by Henderson (1975). 

Usually, it is considered that the shrinkage on markers effects is 

homogeneous; however, this shrinkage should be allelic frequency 

dependant with less shrinkage on markers that have intermediate allelic 

frequency (Gianola, personal communication). Regarding prediction ability, 

these methods do not fit well for those cases where genes with large effect 

are involved, such as in the case of DGAT1 in fat content in milk 

(Meuwissen et al., 2001).  

Bayesian Alphabet 

Bayes A 

This model proposes Bayesian regressions on the genomic markers. It was 

originally proposed by Meuwissen et al. (2001). Bayes A assumes a normal 

prior distribution on the SNPs effects, with zero mean and variance σ j
2 

associated to each marker. This variance is assumed to be distributed as a 

scaled inversed Chi-squared with 4.012 degrees of freedom and scale 
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parameter 0.002 in (Meuwissen et al., 2001) . The choice of these 

hyperparameters fitted the simulations used by the authors, but they have 

been extended to many cases where these values have not been justified. 

Furthermore, these hyperparameters do not allow Bayesian learning, as 

evidenced in Gianola et al. (2009). Contrary to what argued initially, this 

method does not assume different variances for each SNPs, because the prior 

distribution for the variance of the effects is the same for all markers. The 

shrinkage on the marker coefficient estimate depends on the estimated 

marker effect and the allelic frequency of such marker (Gianola, personal 

communication). Bayes A provides accurate predictions, although it seldom 

outperforms the methods described below.  

Bayes B 

This statistical approach was also described in the study of Meuwissen et al. 

(2001). Bayes B is likely the most accepted model, despite the flaws on its 

formulation. Bayes B assumes a normal prior distribution on the SNPs 

effects with zero mean and varianceσ j
2. Then, a mixture of distributions is 

assumed on this variance being equal to zero with probability π and 

distributed as in Bayes A with probability 1-π. This formulation is ill-posed 

from a Bayesian point of view, as assuming a zero variance implies absence 

of uncertainty about the marker effect, and therefore the inference lacks 

Bayesian sense. Furthermore, the election of π is arbitrary with no 

justification and the choice of the hyperparameters in the inversed chi-

squared distribution suffers the same drawbacks as in Bayes A. However, 

Bayes B is one of the most used methods and provides highly accurate 

predictions, especially for those traits regulated by large effect genes as fat 

percentage. In the original article of Meuwissen et al. (2001), averaged 

accuracies (5 replicates) between predicted and simulated values resulted 
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0.318 ±0.018 for least squares, 0.732 ±0.030 for BLUP, 0.798 for Bayes A 

(1 replicate) and 0.848 ±0.012 for Bayes B. 

Bayes C 

Bayes C was proposed to amend some of the defects of Bayes B, as the 

estimation of the probability π or the distribution of mixtures, which in 

Bayes C is applied on the SNPs effects instead of the variances. In a 

comparison using simulated data, Bayesian BLUP, Bayes A, Bayes B and 

Bayes C achieved similar predictive ability and over 0.85 in terms of 

Pearson correlation (Verbyla et al., 2010). 

Bayes SSVS 

Verbyla et al. (2009) proposed Bayes-SSVS, adding stochastic search 

variable selection for the selection of SNP included in the model of 

prediction and those set at zero variance. The main advantage of the method 

is the reduction in computational time when compared with the original 

Bayes B algorithm. 

Bayes Cπ & Dπ 

Habier et al. (2011), described the Bayes Cπ and Bayes Dπ methods. To 

address the drawback of BayesA and BayesB regarding the impact of prior 

hyper-parameters exposed by Gianola et al. (2009) and the prior probability 

on π. The former applies a single variance common to all SNPs instead of 

locus specific variance for those 1-π non-zero markers. The second proposes 

a prior on the scale parameter of the marker effect variance, which follows 

an inverse chi-square prior. In addition, the proportion π of SNP is also 

considered unknown and thereby estimated from the data. However, 

accuracies of these alternative Bayesian methods were similar to original 

methods. None of them as preferred when they were compared in terms of 

prediction accuracy. Bayes Cπ was competitive in terms of computational 
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time as its Gibbs algorithm is faster than the Metropolis-Hastings algorithm 

of the other methods. 

Bayesian LASSO 

The Bayesian counterpart of the LASSO method (Park and Casella, 2008) 

has been proposed for its implementation in genomic selection. This 

methodology considers a Laplace (double exponential, DE) prior distribution 

on the markers effects.  This method performs larger shrinkage on the 

marker coefficients estimates towards zero than methods such as BLUP or 

Bayes A. A large number of markers are estimated with a very small effect, 

almost null, while a small proportion of marker effects are allowed to have 

large effects. This produces an effect similar to the pre-selection of 

covariates (De Los Campos et al., 2010).   

The Bayesian LASSO depends on a shrinkage parameter over the 

distribution of the marker effects. Several alternatives have been proposed 

for the estimation of this parameter. Bayesian estimation is perhaps preferred 

for the philosophy of the method. Note that, SNP effect posterior distribution 

was conditional on the residual variances in the original version. Legarra et 

al. (2010) proposed a modification of the method considering two different 

variances, one for the conditional distribution of SNPs effects, and another 

for the residuals.  

Bayesian LASSO has been widely applied in genomic evaluations. Usai et 

al. (2009) reported better results using a modified LASSO than G-BLUP and 

Bayes-A. They concluded that it provides accurate predictions, especially for 

low density genotyping. Cleveland et al. (2010) reported similar results 

when comparing Bayesian LASSO and two variants of Bayes A, but they 

found better predictions using Bayesian LASSO for those traits regulated by 

a larger number of genes with a small effect.  
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Bayes R 

Bayes R has been recently proposed. It uses a mixture of four zero-mean 

normal distributions as prior distribution on the SNP effects. The first 

distribution assumes zero variance zero effect, and the last one, with 

approximately 1% of the total genetic variance. The prior of the proportions 

of SNP in each distribution was the Dirichlet distribution. This method also 

includes a polygenic effect estimated using the average relationship matrix. 

As in Bayes B, this method assumes no uncertainty for those SNP assigned 

in the zero mean zero variance class, and the total genetic variance is 

assumed known without uncertainty. 

Elastic Net and SNP pre-selection 

The elastic net model, as implemented for genomic selection by Croiseau et 

al. (2011), corresponds to a combination of the ridge regression BLUP and 

LASSO, with an additional parameter α, taking a value in [0, 1], to weight 

the RR and LASSO penalties. With α=1, a LASSO model is defined, 

whereas with α =0 a full ridge regression model is chosen. The objective of 

this method is to provide a more flexible tool for dealing with n << p 

scenarios. It has resulted in encouraging results especially for small 

populations (Croiseau et al., 2011; Sánchez et al. 2011). The authors also 

include SNP pre-selection that can be implemented before carrying out a 

genomic evaluation. Markers included in evaluation were selected following 

QTL detection procedures using a combined linkage disequilibrium and 

linkage analysis (LDLA) (Druet et al., 2008; Meuwissen and Goddard, 

2001). From this LDLA, a value of the likelihood ratio test (LRT) was 

obtained for each haplotype. Then, the 50 SNPs around each detected LRT 

peak (±25) were included in a pre-selected set of SNPs used for genomic 

evaluation. This marker pre-selection did not clearly improve original 

methods in terms of prediction accuracy but reduced the computation time of 

marker regression algorithms.  
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G-BLUP  

This method is similar to the traditional BLUP evaluations described by 

Henderson (1975). However, it uses a genomic relationship matrix built 

from molecular information instead of traditional pedigree relationship 

matrix. Those individuals sharing identical by state genotype for a larger 

number of markers are expected to be genetically more similar and will have 

larger values in the corresponding cells of the matrix. 

This method has gained acceptance by the scientific community and is used 

in the official evaluations of several countries such as U.S.A or Canada. First 

evaluations performed with real data showed reliabilities for the combined 

trait Net Merit of 63% compared to 32% resulting from pedigree index 

(VanRaden, 2008). Luan et al. (2009) found higher accuracies using G-

BLUP than using Bayes B. However, Mrode et al. (2010) in a comparison 

between two G-BLUP, two Bayes-A and two Bayes-B reported similar 

results for the methods considered with some variations depending on the 

target trait.  

Single-Step Genomic Selection 

Most countries combine genomic-enhanced breeding values obtained from 

genomic models with traditional proofs (Hayes et al., 2009b; VanRaden et 

al., 2009b). However, there is not consensus on what is the best approach for 

blending these predictions that are obtained from different sources of 

information, different animals, and different model assumptions. To address 

this problem, Misztal et al. (2009) proposed an evaluation where pedigree 

relationship is reinforced with contributions from the genomic relationship 

matrix. This procedure is expected to improve the evaluation of non 

genotyped animals. This method was tested using the combined 

morphological trait Final Score of U.S.A Holstein records by Aguilar et al. 

(2010). Coefficient of determination resulted in 24 % for PI, 40% for a G-
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BLUP combined with PI in a multiple step procedures and ranged from 37% 

to 41% for six different single-step approaches.  

These methodologies avoid the ad-hoc combination of genomic and 

traditional predictions, however it is necessary to include a weighting 

parameter for the genomic and pedigree relationship matrices. Parameter 

estimates may be biased if the genomic relationship coefficients are in a 

different scale from pedigree-based coefficients. Forni et al. (2011) 

suggested re-scaling the genomic relationship matrix using the observed 

allele frequencies to obtain average diagonal elements of 1. Vitezica et al. 

(2011) concluded that Single Step was less biased than a multiple step 

approach. Recent results of Nordic Red cattle (Su et al., 2012b) showed that 

this method outperformed PI accuracies for the whole data set of animals 

included in the evaluation (genotyped and non genotyped). Slightly greater 

accuracy was also reported compared with DGV using G-BLUP and blended 

genomic values (GEBV) (2.2 % and 1.3 % respectively). 

 The “two-step” approach is undertaken in most dairy cattle populations, 

although research on a single-step approach for genomic predictions is at an 

advanced stage of research in some countries as New Zealand (Harris et al., 

2012). 

Machine Learning algorithms  

These methodologies have emerged recently, and aim at optimizing 

predictive ability in a set of data without assuming a specific pattern of 

inheritance Many algorithms have been developed in the machine learning 

field (Long et al., 2007). Some of them are discussed below.  

Reproducing Kernel Hilbert Spaces Regression (RKHS) 

Gianola et al. (2006) proposed semi-parametric method for the genomic 

evaluations as an alternative to SNPs regressions. These methods are more 
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attractive because of multiple and complex interactions that may exist in the 

biological and metabolic systems. The results obtained so far show that these 

methods are not worse than the Bayesian regression and in many cases over-

performed them in predictive ability (González-Recio et al., 2009; 

Konstantinov and Hayes, 2010; Long et al., 2010). 

For example, in a study about feed conversion rate in broilers, correlations 

between observed and predicted phenotypes with similar to those obtained 

with Bayes A (0.27), while correlation with e PI was 0.11 only (González-

Recio et al., 2009). However, the correlation increases if a pre-selection of 

SNPs was carried out with RKHS implemented subsequently. Several 

authors gave statistical details of the theory underlying these methods 

(Gianola and de los Campos, 2008; Gianola and Kaam, 2008; Wahba, 1999). 

The main disadvantage of these methods is the necessity of tuning some 

internal parameters, and the fact that interpretation of results does not 

respond to a traditional genetic model. 

Random Forest 

The Random Forest (RF) algorithm builds classification or regression trees 

from genotypes and phenotypes of individuals using randomization of the 

sample. It considers all markers but also their possible interactions, 

environmental factors and even interactions between them. Those methods 

present a predictive ability that is equal or better than that of other 

parametric methods (González-Recio and Forni, 2010). The RF algorithm 

offers the possibility of capturing effects of a large number of interactions 

gene-gene and gene-environment (Sun, 2010). This should be a major 

advantage in the study of complex diseases although it has been seldom used 

in genome-assisted evaluations. 



Chapter 1 

- 48 - 

Support Vector Machine 

Support Vector Machine (SVP) are supervised learning models with 

associated learning algorithms that analyze data and recognize patterns used 

for classification and regression analysis. These SVPs perform robust 

regressions for quantitative responses. This method exploits the relationships 

between observations through arraying predictors in an observation space 

using a set of inner products. It can be considered as a specific learning 

algorithm within the general reproducing kernel Hilbert spaces (RKHS) 

regression. In a study by Moser et al. (2009), SVR gave the highest accuracy 

when compared with RR-BLUP or Bayesian regression. 

Neural Networks 

These machine learning algorithms can accommodate complex genotype-

phenotype relationships including additivity but also dominant or epistatic 

effects. Bayesian Radial Basis functions models, as described by Long et al. 

(2010), outperformed Bayes-A when different epistasis and dominant 

scenarios were simulated. Similarly, predictive ability was improved using 

Neural Networks on dairy cows and wheat genomic data compared to 

models that used using only pedigree. Gianola et al. (2011) concluded that 

Neural Networks may be useful for predicting complex traits using high-

dimensional genomic information, where the number of unknowns exceeds 

sample size. Neural Networks can capture non-linear dependencies in an 

adaptive manner. This may be useful for prediction of phenotypes. 

Boosting 

This algorithm has shown competitive behavior in prediction studies in 

multiple domains. In a multi-species study (dairy cattle and broilers), 

Pearson correlations between predicted and observed responses for 

productive life were 0.65, 0.53, 0.66, y 0.63 using two Boosting approaches, 

Bayesian-LASSO and Bayes-A, respectively. In the broiler example, 

http://en.wikipedia.org/wiki/Supervised_learning
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outcomes for those methods were 0.33, 0.37, 0.26 and 0.27 respectively, 

showing a marked advantage of Boosting over the Bayesian models. Based 

on these results, machine learning algorithms are a suitable alternative to 

other methods used for genomic evaluations but at the expense of a lower 

interpretability of results (González-Recio et al., 2010). In a comparison 

between the three methods, Ogutu et al. (2011) concluded that Pearson 

correlation was greater for boosting, intermediate for SVMs and lowest for 

RF but with little difference among the three methods. 

It must be noted that results obtained with different methods depend on 

many factors including genetic architecture of the trait, the RP size, the 

dependent variable used or marker density, among others (Calus, 2010). It is 

necessary to have more information about the real performance of the 

methods in order to decide which is the most suitable for each case. It seems 

inappropriate to give a single recommendation.  

Several methods have been proposed, but no one shows clear advantages 

over the others in terms of prediction ability and almost every country is 

following its own developments. Some convergence should be expected in 

the future, if any methodology out-performs the others. 

Implementation of genomic selection in dairy cattle 

Dependent variable 

Accurate phenotyping is still the main pre-requisite for a successful breeding 

program, and is even more important within a genomic context. The 

reduction of testing schemes and phenotyping data collection could squander 

any potential advantage of GS.  

It is also possible to use Predictive Transmitting Ability (PTA) as dependent 

variable in the genomic evaluations. PTA is the predicted genetic merit that 

an animal transmits to its offspring for a given trait, including information 
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coming from its relatives. However it is convenient to use daughter yield 

deviation (DYD) as dependent variable to avoid that information from 

relatives influence the genomic breeding value of a given animal. The DYD 

for sires is the average of the phenotypes of the offspring adjusted by the 

genetic value of the mating and the environmental effects. In the extreme 

case, phenotypes can be used as response variable, but this has not yet been 

studied with the exception of Single-Step approaches, and further research is 

necessary on this context. There is not an agreement about the most suitable 

response variable and depends on the problem to be solved or the data 

available. For instance, in dairy cattle each country uses different measures: 

DYD, de-regressed national and international EBV or phenotypic records as 

the case of Israel (Loberg and Dürr, 2009). Currently, most of the genomic 

evaluations include bulls from other countries in the RP. Genotypes of 

foreign bulls are only useful if they have available phenotypic information. 

In these cases, the only source of information is the sire’s deregressed 

multiple across country evaluations (MACE) EBV expressed on each 

national scale (Liu, 2011). 

The Dependent variable used for most genomic evaluations of dairy cattle is 

still either a traditional stimated breeding value or another kind of pseudo-

phenotype. To achieve the maximum benefits of GS, real phenotypes should 

be the desired dependent variable in the future. Prediction of future 

phenotypes should be the goal of GS.  

Chips 

Chips that contain SNPs specifically chosen for their large effects, gave high 

accuracy of genomic breeding values (De los Campos et al., 2009). 

However, designed chips based on evenly spaced SNPs along the genome, 

produce more reliable predictions (Kong et al., 2008), and they may be used 

for multiple trait evaluations. If the cost of genotyping limits SNP panels to 
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750 loci or fewer, assays based on selected SNP with large estimated effects 

on the trait may be preferred (Weigel et al., 2010a). The Bovine SNP50 Chip 

(Illumina, San Diego, CA, USA) genotyping assay with 54001 SNPs 

(Matukumalli et al., 2009) has been, so far, the preferred and most 

commonly used in dairy cattle. It is usually referred as the 50K density chip, 

and was updated by a second version enhanced to 54609 markers in 2011.  

Low density chips include the Golden Gate Illumina Bovine 3K with 2,900 

SNPs. This technology was recently re-designed to improve imputation 

accuracy in multiple breeds (Boichard et al., 2012), and has been replaced by 

the Illumina BovineLD BeadChip using 6909 SNPs. Recently, a customized 

Genseek Genomic Profiler assay is becoming popular. This chip includes 

10K SNPs including those in the BovineLD, some for parentage verification 

and some markers related to diseases. The Affymetrix MegAllele GeneChip 

Bovine Mapping offers similar density and has also been used in some 

genotyping process (Sargolzaei et al., 2008). Ultra High density assay chips 

include 777,962 SNPs for the Illumina BovineHD BeadChip or 640,000 for 

the Affymetrix Axiom Genome-Wide BOS 1 Array. For most of those 

purposes, high density platforms (>500K) offer new expectations. The use of 

those “ultra-high density” assays may provide larger linkage disequilibrium 

between SNPs and QTLs, and therefore, higher reliability of the estimations 

(VanRaden et al., 2013). This increase may be of particular relevance in 

situations in which using the current chips cannot obtain sufficient accuracy. 

In addition, other customized SNP arrays were used within some genomic 

programs, as the CRV 60,000-marker chip (De Roos et al., 2009). 

International collaboration 

In addition to the aforementioned joint RPs, a major international consortium 

has now been established to pool records for dry matter intake, and feed 

efficiency from Ireland, Australia, U.S.A. , The Netherlands, U.K. and 
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Germany (De Haas et al., 2012; Veerkamp et al., 2012). Similar strategies 

are expected in the near future. A similar approach was chosen by the most 

important Brown Swiss populations (Austria, France, Germany, Slovenia, 

Switzerland, and the United States), implementing a common GS framework 

known as Intergenomics (Santus, 2011). 

An important issue for the development of genomic selection is the 

management of property rights on the information required for carrying out 

genomic evaluations (Genotypes, phenotypes and pedigrees). This a key 

point for marketing strategies and exchange of genotypes. Each country has 

different policies regarding the ownership of genomic data. For instances, 

genotypes belong to private companies, to farmers, or to different 

organizations within the dairy cattle market as research centers, AI  

companies, breeder associations, herd books, research projects or different 

government departments (Loberg and Dürr, 2009).  

Blending traditional and genomic information  

Different sources of information have to be taken into account for the 

publication of genetic merit. Dairy cattle programs are overwhelmed with 

genetic evaluations for several production traits (kg of milk, fat and protein, 

percentages of fat and protein…), functional traits (fertility, somatic cell 

count, longevity…), and more than 16 linear type traits, plus their respective 

genome-enhanced breeding values.  

Researchers and industry partners have tried to provide a blended genomic 

evaluation combining DGV and traditional proofs in different manners 

regarding the country. Currently, there are phenotyped and genotyped 

animals but also phenotyped but non-genotyped, genotyped but non-

phenotyped and animals without any of this information. A whole joint 

evaluation is becoming another challenge nowadays. 
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Currently, the most common option is running traditional evaluations and 

genomic enhanced separately and then combine both results (Hayes et al., 

2009b; VanRaden, 2008). Usually, pseudo-data (DYD or breeding values) 

are used as dependent variable for sire genomic evaluation which do not 

have own phenotypes for the traits of interest, but do have reliable progeny 

proofs. The blended genomic value contains information from DGV and 

traditional proofs. Both values were initially weighted according to the 

estimated reliability of each (VanRaden et al., 2009b), although some 

modifications have been proposed recently. 

DGV and traditional breeding values are still two different sources of 

information and the optimal way to blend them is not completely clear yet. 

In addition, reliabilities of genomic values and therefore reliabilities of 

blending values have not a standard way of measurement. Even within a GS 

program, the estimates of reliability depends on the animal amount of 

information. For bulls with daughter information, VanRaden et al. (2009) 

proposed a selection index for the predictor bulls that included: 1) direct 

genomic prediction; 2) subset PTA; and 3) published PTA. Where subset 

PTA refers to a traditional genetic evaluation considering only genotyped 

animals. However, the computation of weights based on reliabilities of the 

three sources of information is not clearly justified.  

Blending DGV and PI could mask those individuals with large differences 

between both sources of information. These cases are not evident to the 

breeder. In practice, genomics is used as a source of additional information 

to the traditional evaluations. Young candidates with different traditional and 

genomic breeding values should be assesed based on the knowledge of both 

evaluations independently. 

To obtain reliabilities of blended genomic values, the R2 from PI and from 

the genomic based models were divided by mean reliability of daughter 
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deviations. Then, the difference between the published and observed PI 

reliabilities was added to the adjusted genomic R2 to obtain the realized 

genomic reliability. Following the same approach for blending genomic 

values, Su et al. (2012b), computed expected reliabilities as the weighted 

average of the original reliabilities, using the weights previously computed 

for genomic values. 

Some methods include a polygenic effect in the genomic prediction model 

instead of posterior blending predictions. Incorporating pedigree information 

does not improve prediction accuracy if genotyping is dense enough (Calus 

and Veerkamp, 2007). Genomic evaluations are more consistent including it 

but decreases the correlation between DGV and EBV of sires in the RP and 

prediction accuracy is reduced as the polygenic variance increases (Liu et al., 

2011). However, proportion of variance explained by markers is trait 

dependent (Jensen et al., 2012). These authors conclude that for all traits 

analyzed more than 92% of all additive genetic variance could be explained 

using 44 K SNP markers. Also, further increases in marker density will have 

limited effects on predictive accuracy, unless better methods are used to 

distinguish between markers with real effects and markers with no effect. 

With full sequencing for a substantial number of animals, SNP that are the 

causative mutation or are closely linked to it may be identified. Identification 

of those SNP may enable an increase in evaluation accuracy and a decreased 

number of SNP needed for evaluation. 

Results of this thesis are based on DGV using different evaluation 

methodologies. However, the end products in actual implementations of GS 

are GEBV blending DGV with traditional EBV. The aim of the thesis is the 

study and comparison of genotypes, and methods. Using DGVs is justified 

because they are less influenced by other sources of information. 
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Genomic selection across populations 

Combining data sets from different populations has been proposed as a way 

to increase accuracy for small populations. Early simulation studies showed 

that reliability improvement in joint populations depends on marker density 

and genetic distance between populations (Roos et al., 2009). However, 

some results with real data showed that no improvement was found when a 

genomic relionship matrix was used and only slightly improvement when 

Bayesian regression was used as the method of evaluation (Hayes et al., 

2009a; Pryce et al., 2011). In a similar study, Erbe et al. (2012a), found 

greater accuracies for the smaller population in an across-breed evaluation 

when the method of evaluation was Bayes-R, and the SNP’s were a subset of 

the HD array including only those 58,532 SNP’s in the transcribed part of 

the bovine genome. However, no improvement was found for the larger 

population. Accounting for breed-specific SNP allele effects as suggested by 

Ibánẽz-Escriche et al., (2009) is an alternative to increase DGV reliability. 

However it was not clearly demonstrated with real data using G-BLUP 

(Makgahlela et al., 2012).  

International evaluations 

The traditional genetic evaluations from each country are combined in an 

international evaluation, carried out by Interbull throughout the MACE 

procedure. However, the complexity of genomic evaluation, the different 

methods used in the respective national genomic evaluations and the 

different dependent variable between countries, limit the implementation of 

such a methodology on genome-enhanced breeding values. Greater efforts in 

research are required to respond to this problem. Sullivan and VanRaden 

(2009) proposed the G-MACE method that can deal with genomic data and 

is no longer based on independence of data sets across countries, as far as the 

group of involved countries is sharing data and genotypes to get better 



Chapter 1 

- 56 - 

predictions. The first official results for international genomic validations 

(GEBV Test) were published in the Interbull website in August 2010 for 

protein yield. Data came from Canada, Denmark, Sweden, Finland, France, 

Germany, Poland, New Zealand, Netherlands and United States. The 

European commission has accepted as valid procedures within the European 

Union, genomic evaluations from those countries validates through “GEBV 

test”.The First Spanish genomic evaluations using the entire Eurogenomics 

RP passed the GEBV test in May 2012. 

Future developments 

New Traits 

GS offers additional benefits for those traits that are difficult to measure (e.g. 

disease resistance, feed efficiency or meat quality), traits of low heritability 

(e.g. related to fertility), sex linked (e.g. milk production), expressed at late 

ages (e.g. longevity) or even those measured after slaughtering (e.g. Carcass 

traits). An appropriate choice of individuals to be phenotyped and genotyped 

might favor the implementation of GS for those traits. Genomic values can 

be provided for the rest of the genotyped animals, when marker effects are 

estimated in a correctly phenotyped population. The phenotype of the 

candidates or their closest relatives is no longer required to provide accurate 

predictions (Dekkers, 2010). However, genomic selection reliability is 

expected to be greater for animals related to those individuals used as RP 

(Pérez-Cabal et al., 2012). Phenotypic information of an indicator trait 

genetically correlated with these new traits and recorded on a large scale can 

be integrated in to the genomic evaluation model to improve the accuracy of 

predictions for those traits (Calus and Veerkamp, 2007) 
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Gene introgression 

New genes introgression could be managed in a more efficient way using 

marker information (Amador et al., 2012). These techniques might be of 

interest for managing further progress on disease resistance, adaptation to 

hard environmental conditions, for quality production or increase in 

productive efficiency (Odegard et al., 2009). 

Sources of genetic variability 

Most of the methods applied in genomic selection exploit additive marker 

variance (Gianola et al., 2009). However, other sources of variability such as 

dominant or epistatic effects included in models of whole-genome evaluation 

could increase the accuracy of predictions (Toro and Varona, 2010). 

Full sequencing for a substantial number of animals should provide SNP that 

are the causative mutations or that are closely linked. Identification of these 

SNP may enable an increase in evaluation accuracy and a decreased number 

of SNP needed for evaluation (Wiggans et al., 2011). Simulation studies 

showed that, current methods used in genomic selection would not be able to 

identify recent mutations affecting traits of interest (Casellas and Varona, 

2011). In fact, SNPs with low minor allele frequency (MAF) are usually 

removed during the quality control process before genomic evaluations.  

 In addition, copy number variations (CNVs), which represent a significant 

source of genetic diversity in mammals, have been shown to be associated 

with phenotypes. The cattle genome exhibits copy number variation within 

and between breeds (Fadista et al., 2010). Other structural variants or signals 

that are identified through SNPs, such as epigenetic effects, may play also an 

important role in current evaluations of breeding values (González-Recio, 

2012). Taking into account these sources of variation could increase 

reliability of predicted breeding values in the future. 
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Imputation 

Despite the improvement in reliability of young selected candidates, 

genomic selection may be economically unfeasible in commercial farms due 

to an unaffordable genotyping price. Genotyping was initially restricted to 

males and elite females in most dairy cattle populations. So, a key point in a 

genomic selection program is the optimization of genomic information in 

breeding programs (Pryce and Daetwyler, 2012). Low density SNPs panels 

have been developed with the objective of reducing genotyping costs. Less 

expensive low density genotyping platforms have increased the number of 

genotyped animals. However, performance of low density panels, in terms of 

predictive ability, is not competitive for most cases. Imputation methods 

have been developed to solve this problem. Accurate genotype imputations 

(or predictions) of those SNP not included in the low density chip may be 

obtained using high density genotypes as reference. Imputation methods 

combine a “reference panel” of individuals genotyped at a dense set of 

polymorphic sites (usually SNP’s) with a sample from a genetically similar 

population genotyped at a subset of sites out of the dense set of 

polymorphisms (Howie et al., 2009). Imputation capitalizes on the linkage 

disequilibrium between SNPs in the high density panel, with the premise that 

SNPs with large linkage disequilibrium are inherited jointly.  

 One of the first steps in the imputation process is to phase haplotypes. 

Usually, genotypes do not provide phase of the haplotypes. In a biallelic 

locus, phase is unknown for heterozygote individuals. Older phasing 

methods often use linkage information (Sobel and Lange, 1996), and provide 

the most probable phase between SNPs according to haplotype frequencies. 

Phasing methods that solely rely on LDQ tend to mistakenly introduce 

recombinations when applied to genotypes covering long genetic distances 

(Kong et al., 2008). For this reason, some methods introduce family 
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relationships. Family based algorithms could increase imputation accuracy ( 

e.g., Albers et al., 2007; Ding et al., 2007). 

Imputation could be useful for incorporating animals genotyped at low 

density into genetic evaluations; e.g commercial females. The inclusion of 

some of these animals could increase the size of the RP for SNP effects 

estimation in low h2 traits, preselection of progeny testing candidates or 

genomic mating design. In addition, these chips with lower prices would 

allow implementing genomic selection in species or breeds in which current 

cost is not affordable, for instances, species with a reduced individual value, 

like poultry, sheep or swine. Combination of the information from different 

SNPs platforms is also possible after imputation process (Druet et al., 2010). 

Genotyping a large RP at extra large high density could be cost prohibitive. 

Therefore, it is possible to genotype a subset of the RP at high density and 

then to impute the remaining genotypes. The predictive accuracy of a 

posterior genomic evaluation should be checked to ensure that it out-

performs the results obtained before the imputation. 

Reference population for imputation 

Currently, different density chips are marketed. Genomic programs 

including genotyping strategies need a RP for imputing missing SNPs. The 

RP must include a representative sample of the genetic background of the 

whole population, with similar allelic frequencies as the population to be 

imputed (Hao et al., 2009). Phenotypic information of reference animals is 

not needed for imputation. The imputation accuracy is function of the 

relatedness between animals in the RP and those to be imputed (Meuwissen 

and Goddard, 2010). For instance calves genotyped at high density are a 

good source of information in order to impute their dams or sisters 

genotyped at lower density. However, a priori, the highly represented bulls 

in the population or animals from most common matings (sire x maternal 
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grand sire) are good candidates to be genotyped as RP. The RP should also 

be large. The larger the population size, the larger the imputation accuracy. 

Animals in the RP should be genotyped with the higher density SNP 

platform possible (Weigel et al., 2010c). In a genomic program integrating 

different SNPs panels an additional RP for imputation purposes should be 

considered. 

Methods, imputation accuracy and reliability of imputed 

genotypes 

Several methods have been developed for imputation, and different software 

are currently available (Kong et al., 2008). Imputation methods can be 

compared by the error rate of imputation, which is the percentage of SNPs 

incorrectly imputed. In a comparison study of different software carried out 

by (Biernacka et al., 2009)  Mach (Li and Abecasis, 2006) and Impute 

(Marchini et al., 2007) produced lower imputation error than Plink (Purcell 

et al., 2007) and Fastphase (Scheet and Stephens, 2006) on a rheumatoid 

arthritis case-control data set. For all methods, imputation is more reliable 

for SNP genotypes that are in strong LD and those with lower MAF (Pei et 

al., 2008). In a similar comparison between Impute, Mach, Beagle 

(Browning and Browning, 2009) and Plink, the latter performed consistently 

poorer than the other three. Based on those results, Nothnagel et al. (2009) 

recommended Mach or Beagle because these programs are more user-

friendly and require less memory than Impute. Pei et al. (2008) found better 

results when imputation is carried out by Mach and Impute instead of 

Fastphase, Plink or Beagle. In another study, Beagle was similar or more 

accurate than Fastphase, Impute or Mach for SNP imputation from different 

assays, and was also competitive in terms of computational efficiency 

(Howie et al., 2009).  
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Regarding dairy cattle genotypes, low density genotypes (2-4K) could be 

accurately imputed to high density genotype (50K) (accuracy above 90%). 

Weigel et al., (2010b) reported accuracies of 0.869, 0.758, 0.709 or 0.687 

using Fastphase1.2 and 0.926, 0.887, 0.758 or 0.7 12 with Impute 2.0 when 

90, 95, 98, or 99% of BovineSNP50 genotypes were masked in a population 

of 3,146 North America Jersey cattle.  

Recently, other software has been developed for animal breeding programs. 

These methods are designed to combine population and pedigree 

haplotyping such as Findhap.f90 (VanRaden et al., 2011), FImpute 

(Sargolzaei et al., 2011), AlphaImpute (Hickey et al., 2012) or Phasebook 

(Druet and Georges, 2010), the latter being based on Beagle. When those 

new approaches are compared, Beagle was shown to be about twice as 

accurate as Findhap (Segelke et al., 2012). Johnston et al. (2011) concluded 

that: FImpute was the fastest program and was the most accurate software 

program for animals using family information, while Beagle was the most 

accurate software for animals with limited family information.  

Some of the aforementioned software Beagle (v3.3), Impute (v2.0), 

Fastphase (v1.4), AlphaImpute, Findhap(v2), and FImpute(v2), were 

included in an ensemble-based system considering each method as a 

classifier.  Beagle and FImpute had the greatest accuracy among the six 

imputation packages, the best imputation accuracies were those that had 

Beagle as first classifier in the proposed ensemble (Sun et al., 2012). A 

different approach was proposed by Calus et al. (2011) in this case using a 

multivariate mixed model framework. This new approach over-performed 

Fastphase and Beagle when genotyping density was low, but Beagle 

outperformed the other methods at high SNP density.  

Once low density genotypes have been imputed to high density, it is possible 

to estimate the genomic values with similar accuracy than that obtained with 
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high density genotyping (Berry and Kearney, 2011). Accuracy of DGV of 

young selection candidates could be increased after imputation compared to 

those from pure low density typed SNP. Weigel et al. (2010a) showed that 

animals genotyped at low density but with enough phenotypic information, 

could be included in the RP after imputation to higher density panels. The 

overall accuracy of SNPs effects estimation was increased. 

Low density SNP panels could be designed using those SNP more 

informative in terms of predictive ability. Young Holstein Bulls genotyped 

for 300 to 2000 highly selected SNP could provide DGV for lifetime merit 

with correlations of 0.43 to 0.57 with future PTA, while correlation using the 

BovineSNP50 Beadchip achieved a correlation of 0.61 (De los Campos et 

al., 2009). For individual traits, platforms with 500 to 1000 selected SNP, 

where selection was based on the largest estimated effects resulted in 

correlations of 0.55 to 0.65 with PTA from progeny testing.  

However, dairy cattle genetic programs include several traits with different 

informative SNPs for each of them. Under this scenario, low density 

platforms designs based on evenly spaced SNPs are preferred to obtain good 

predictive accuracy across traits. In a Jersey cattle study based on 1446 sires 

genotyped with 42556 SNPs, genomic values were estimated showing a 

correlation of a 70,6% with sires PTAs from traditional evaluations. After 

removing a 93% of the SNPs based on equidistant physical location and high 

minor allele frequency of remaining, (equivalent to 3K chip) and posterior 

imputation of these SNPs, average correlation with PTAs was 0.685 (Weigel 

et al., 2010c). A critical issue with imputed genotypes is how to integrate 

them effectively into the genomic evaluation system. One can use these 

posterior probabilities directly or pick up the ‘‘best-guess’’ genotype to 

perform the subsequent evaluation (Pei et al., 2010). 
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The first step in the implementation of genomic selection is to create a RP of 

genotyped animals. The RP is used to train a statistical model that estimates 

the effects of each SNP or genomic combinations between phenotypes and 

SNPs (or combination of SNPs). The estimates obtained from the RP allow 

the prediction of genomic breeding values for new individuals with the only 

source of information of their DNA (Dekkers, 2010). The characteristics of 

these RP, like the size or the animals included, is relevant to increase the 

accuracy of future predicted DGV (Hayes et al., 2009a; VanRaden et al., 

2009b). Most countries only have sires genotyped as RP (Loberg and Dürr, 

2009). They are a good representation of the genetic structure of the 

population, and achieve high reliabilities due to the large amount of 

information generated by their daughters. However, many programs have a 

limited number of highly reliable sires that precludes high reliabilities of 

genomic predictions (VanRaden et al., 2009a). The efficiency of those 

programs could improve considering international agreements for joining 

several RP or alternative selective genotyping. The inclusion of the most 

informative females should be evaluated for this purpose (Spangler et al, 

2008; Sen et al., 2009). It can be hypothesized that the genotypes of large 

female populations are an alternative to improve the accuracy of the genomic 

evaluations.  

After genotyping a RP, different approaches are currently used for 

estimating genomic values, and it is important to assess the performance of 

diverse methodologies and identify the methods that provide the greatest 

predictive ability in a given population. Genomic prediction methods can be 

categorized as: 1) methods that regress phenotypic records on SNP markers 

directly, and 2) methods that compute genomic values as a function of the 

genomic relationship using a (co)variance structure between subjects (De los 

Campos et al., 2009). Several methods have been developed but no one 

shows clear advantages over the others in terms of prediction ability and 
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almost every country is following their owns developments. If some 

methodology over-performs the others some convergence should be 

expected in the future. Machine Learning algorithms are an appealing 

alternative to Bayesian regressions and G-BLUP. These methodologies have 

emerged recently, and are aim to optimize predictive ability in a data set 

without adjusting a specific pattern of inheritance. Boosting is one of the 

machine learning algorithms implemented for genomic selection with great 

predictive ability (Ogutu et al. 2011). This is also a suitable alternative to 

other methods used for genomic evaluations (González-Recio et al., 2010).  

Despite the improvement in reliability of young selected candidates, 

genomic selection may be economically unfeasible in commercial farms due 

to an unaffordable chip price. So, next key point in a genomic selection 

program was the optimization of genotype density in candidate animals 

(Pryce and Daetwyler, 2012). Low density SNPs panels have been 

developed for this purpose. Low density genotyping platforms have increase 

the number of genotyped animals due to their low prices. However, 

performance of low density panels in terms of predictive ability is not 

competitive for most cases (Weigel et al., 2009). Imputation methods have 

been proposed with the aim to solve that problem. These methods combine a 

“reference set” of individuals genotyped at a dense panel of polymorphic 

sites (usually SNP’s) with a set from a genetically similar population 

genotyped at a subset of those sites in the dense panel (Howie et al., 2009).  

Several methods have been proposed for imputation, and different software 

are currently available (Kong et al., 2008). Among them, Beagle (Browning 

and Browning, 2009) is reported as competitive when compared to other 

approaches (Johnston et al., 2011; Segelke et al., 2012; Sun et al., 2012).  
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The main objective of this thesis was to contribute to the implementation of 

genomic selection in the Spanish dairy cattle, which occurred in parallel to 

the development of this Doctoral thesis.  

The specific objectives were   

1) The creation of a reference population sufficiently informative when the 

progeny tested sire population is limited. 

2) The development of a competitive and reliable genomic evaluation in 

terms of prediction accuracy, computationally efficient and flexible for 

further future developments. 

3) The implementation of a flexible and efficient imputation design for 

different density genotypes. 
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The design of the reference population is fundamental to maximizing the 

benefits of genomic selection. Currently, most of the animals genotyped are 

sires; however, the number of sires available in some populations might not 

be enough to make an appropriate genomic evaluation. This study presents 

an optimal genotyping design that includes females in the reference 

population, suggesting that two-tailed strategies are preferable to increase 

the reliability of genomic selection in small cattle populations. 
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Abstract 

This study evaluated different female-selective genotyping strategies to 

increase the predictive accuracy of genomic breeding values in populations 

that have a limited number of sires with a large number of progeny. A 

simulated dairy population was utilized to address the aims of the study. The 

following selection strategies were used: random selection, two-tailed 

selection by yield deviations, two-tailed selection by breeding value, top 

yield deviation selection, and top breeding value selection. For comparison, 

two other strategies: genotyping of sires and pedigree indexes from 

traditional genetic evaluation were included in the analysis. Two scenarios 

were simulated, low heritability (h2=0.10) and medium heritability (h2=0.30). 

Genomic breeding values were estimated using the Bayesian Lasso. The 

accuracy of predicted genomic breeding values using the two-tailed 

strategies was better than the accuracy obtained using other strategies (0.50 

and 0.63 for the two-tailed by yield deviations strategy and 0.48 and 0.63 for 

the two-tailed by breeding values strategy in low- and medium-heritability 

scenarios, respectively, using 1000 genotypes of cows). When 996 

genotyped bulls were used as the training population, the sire’ strategy led to 

accuracies of 0.48 and 0.55 for low- and medium-heritability traits, 

respectively. The random strategies required larger training populations to 

outperform the accuracies of the pedigree index, but selecting females from 

the top of the yield deviations or breeding values of the population did not 

improve accuracy relative to that of the pedigree index. Bias was found for 

all genotyping strategies considered, although the top strategies produced the 

most biased predictions.  

Strategies that involve genotyping cows can be implemented in breeding 

programs that have a limited number of sires with a reliable progeny test. 

The results of this study showed that females that exhibited upper and lower 

extreme values within the distribution of yield deviations may be included as 
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training population to increase reliability in small reference populations. The 

strategies that selected only the females that had high estimated breeding 

values or yield deviations produced suboptimal results.  
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Introduction 

Genomic selection (GS) is the most promising tool that has emerged for 

increasing the genetic gain rate in livestock (Weigel et al., 2010). Genetic 

evaluations that use genomic information aim to increase the accuracy of 

breeding value predictions. Genomic evaluations have focused mainly on 

sire breeding value predictions (EBV) that use daughter yield deviations 

(DYD) as the response variable in reference populations because sires have a 

larger impact on breeding programs than cows, and their DYDs are more 

accurate than cow phenotypes (Calus, 2009). 

In genomically assisted evaluations, a reference population is needed to 

estimate marker effects that account for linkage disequilibrium between 

markers and quantitative trait loci (QTL). The characteristics of the training 

population, e.g., its size or the selection of the animals to genotype, are 

important for increasing the accuracy of genomic predictions (Hayes et al., 

2009; VanRaden et al., 2009a). There are challenges in reaching sufficiently 

high predictive accuracy, especially in small populations and particularly for 

low heritability traits (VanRaden et al., 2009b). In most countries, only sires 

have been genotyped and included in the reference population (Loberg and 

Dürr, 2009) because bulls drive the genetic structure of the population and 

provide high predictive accuracy due to the large amount of information 

from their daughters’ averages. In some countries, however, there are a 

limited number of sires that have been progeny-tested, and this hampers the 

accuracy of the predictions in test populations (VanRaden et al., 2009b); 

thus, alternative strategies are required. 

For instance, international collaborations for joining different populations 

have helped to increase population sizes (Wiggans et al., 2008; Cromie et al., 

2010; Lund et al., 2010).  
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GS can be enhanced using female genotypes because economically 

important traits are measured in the female population, and cows comprise 

the largest proportion of the Holstein population. In addition, increasing 

attention has been directed at recording functional traits, particularly health 

traits. Female reference populations for genomic selection of those new 

phenotypes could be feasible (Ducrocq and Santus, 2011). Dominant and 

epistatic effects can be captured and exploited. The relationship between the 

genotype and phenotype of a cow is expected to be stronger than the 

relationship between a sire’s genotype and his daughter phenotypes. 

Currently, in some genomic programs, the best females, which are 

candidates for bull dams, are being genotyped (Loberg and Dürr, 2009). 

However, with large numbers of selection candidates in the female 

population, a pre-selection of genotyped animals is needed to optimize 

genotyping costs (Blonk et al., 2010). Selective genotyping of the most 

informative individuals might increase genotyping efficiency (Spangler et 

al., 2008; Sen et al., 2009). However, there has been very limited research as 

to which animals are most informative in terms of single nucleotide 

polymorphism (SNP) effects and genomic predictions when females are 

used in the reference population. 

The aim of this study was to evaluate female-selective genotyping strategies 

using simulation and to increase the predictive accuracy of genomic 

breeding values (GBVs) in populations that have a limited number of sires 

with large number of progeny.  

Materials and methods 

Simulations  

Phenotypes and genotypes were simulated to mimic a dairy cattle population 

based on 996 progeny-tested sires and 40000 dams. These recorded and 
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genotyped animals were used to select different training populations in 

genomic selection programs.  

The simulation was performed with the QMSim software (Sargolzaei and 

Schenkel, 2009) using the following parameters: 1,000 historical generations 

were generated to produce a realistic level of linkage disequilibrium (LD) 

similar to that obtained for the currently used 50 K SNP chip. 

LD, the non-random association of alleles between two loci, was measured 

using the r2 parameter (Hill and Robertson, 1968). LD can be estimated using 

other measurements, such as D, D´ or different measures based on the chi-

squared statistic (Zhao et al., 2005); however, r2 is the most common 

measure of LD for biallelic markers, and it is less sensitive to the effects of 

allelic frequency (Sargolzaei et al., 2008). 

The first historical population was composed of 1000 females and 400 

males. During the 1,000 historical generations, the population size decreased 

from 1,400 to 400 individuals with the same sex ratio, which mimicked a 

bottleneck and a decrease in the effective number (Ne) to account for the 

evolution of the historical Holstein effective population size (Hayes et al., 

2003; Sorensen et al., 2005). Previous simulation studies have used a similar 

effective number (e.g., Meuwissen et al., 2001). Following the bottleneck, 

historical population size was extended for 40 added generations. Then, 

20,000 females and 300 males from the last historical generation were used 

as founders. Similar strategies (shrinkage and expansion of the population) 

have been used in simulations of dairy cattle populations (Habier et al., 

2009, De Roos et al., 2009). 

From this founder population and based on BLUP EBVs, 15 overlapping 

generations of selection were simulated as contemporary born animals. The 

population was under random mating between selected animals, and the 

average sex ratio was 0.5. During the 15 periods of selection, 51 out of 300 
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tested sires were selected as proven bulls (17%), and 9,000 out of 20,000 of 

the dams were culled (45%). Selection and culling criteria were based on 

EBVs. Individuals from the next offspring replaced culled animals. This 

overlapping active population was used to mimic a scaled representation of a 

dairy cattle population having higher selection intensity in males than in 

females. Individuals from progeny sets 10 through 15 were genotyped and 

used to create the training and validation sets. Genotyped animals had at 

least 10 generations of traditional selection and pedigree depth. 

The simulated genome consisted of 30 chromosomes (100 cM each), and the 

recombination rate was adjusted to this distance. With the objective of 

obtaining a desired LD between adjacent SNPs, 9990 biallelic markers were 

equally spaced out over the genome. Additive genetic effects were 

determined by ninety quantitative trait loci (QTL) that were simulated and 

randomly distributed along the genome. QTL effects were generated based 

on a gamma distribution with a shape parameter equal to 0.4 (Hayes and 

Goddard, 2001; Meuwissen et al., 2001). QTL allelic effects were first 

sampled from the gamma distribution in such a way as to be positive or 

negative with a probability of 0.5. As expected, most of the QTL had a small 

effect, but others had a large effect. The mutation rate was fixed at 2.5e-5, 

and the number of crossovers was sampled from a Poisson distribution with 

positions randomly distributed. The new variants and the selection process as 

well as drift and Bulmer effects modified the genetic variance. True breeding 

values (TBVs) were calculated by summing all QTL effects and were 

subsequently scaled to a realized genetic variance of 1. Distributions of the 

QTL effects of the traits are shown in Figure 2.1. 
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Figure 2.1 Distribution of simulated QTL effects: (a) 0.30 heritability trait 
scenario and (b) 0.10 heritability trait scenario.  

 

The simulation study included two scenarios in terms of heritability (0.10 

and 0.30). For each animal from sets 10 through 15, pedigrees, true breeding 

values, phenotypes, and genotypes were simulated, and breeding values were 

estimated. Analyses were performed on 10 replicates (five per trait), and the 

strategy and sizes of the training sets were designed to be sufficient for the 

aim of the study.  

Selective Genotyping Strategies 

Animals from progeny sets 11 through 14 represented a contemporary 

overlapping active population of 40,000 females. From them, 1000, 2000, 

and 5000 females were selected and genotyped as training sets based on the 

following strategies: 
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1. At random (RND). -  Females were randomly selected from the available 

population (generations 11 through 14). 

2. Two-tailed Yield Deviation values (TTYD). - An equal number of 

females were selected from the lowest α/2 and the highest (1-α/2) percentiles 

of the yield deviation distribution (for α=0.025, 0.05, and 0.125).  

3. Two-tailed EBVs (TTBV). -  This subset represented a selection of 

females that had estimated breeding values in the lowest α/2 and highest (1-

α/2) percentiles of the distribution (for α=0.025, 0.05, and 0.125).  

4. Highest Yield Deviation values (TopYD). - In this strategy, cows that had 

yield deviations in the 1-α percentile (for α=0.025, 0.05, and 0.125) were 

selected. 

5. Highest EBVs (TopBV). - Cows that had estimated breeding values in the 

1-α percentile (for α=0.025, 0.05, and 0.125) were selected. 

Genotyping strategies based on animals selected by their breeding values 

were included to evaluate the information provided by the pedigree and its 

effects on the accuracy of the genomic evaluation relative to the true 

breeding values. 

As a reference, all sires (996) from progeny sets 10 through 13 were 

genotyped (SiresDYD). The distribution of family sizes showed values 

consistent with a dairy population of 40,000 contemporary cows (Figure 

2.2).  
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Figure 2.2. Distribution of the number of daughters per sire in (a) 0.30 
heritability trait scenario and (b) 0.10 heritability trait scenario. 

For each selection period, sires with higher EBVs were allowed to breed a 

new crop of progeny. Sires that had fewer than 40 daughters represented 

discarded progeny-tested bulls that were excluded after their first crop of 

daughters. In each period, 17% were proven bulls; González-Recio et al. 

(2005) reported a similar value for successful progeny-tested bulls in a 

progeny test program in Spain. 

Daughter yield deviation was used as a dependent variable in the analysis of 

the SiresDYD strategy. When training and testing datasets overlap, 

evaluations of realized accuracies for genomic predictions can result in 

overconfidence (Amer and Banos, 2010); therefore, to avoid overlap 

between training and testing subsets, males of progeny sets 14 and 15 were 

excluded from the analysis. In addition, the records from cows from the last 

crop of daughters (15) were excluded from the estimates of DYD, as these 

animals were included in the validation set. To account for different 

accuracies in the DYD estimations, these values were weighted by their 

prediction error variances in terms of number of daughter equivalents 

(VanRaden and Wiggans, 1991). 
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Genomic Evaluation Model 

The Bayesian version of the LASSO method (de los Campos et al., 2009) 

was used to estimate SNP coefficients in the training populations. The 

response variables in the females strategies were the yield deviations, which 

are a result of a combination of a cow’s genetic and residual values. Fixed 

effects were not simulated. The yield deviation was used as a dependent 

variable in the evaluation of all of the female-based selective genotyping 

strategies, including the strategies in which selection was based on breeding 

values. A single chain of Gibbs sampling was run using 10,000 iterations 

and a burn-in period of 2,500. Convergence was checked visually. 

Accuracy of genomic evaluations 

Accuracy is a common measurement of predictive ability (Goddard and 

Hayes, 2007; Luan et al., 2009) in genetic prediction studies. Accuracy was 

quantified using Pearson correlations between the predicted GBV and true 

breeding values simulated for generation 15. Means and standard deviations 

after five replicates were calculated for each strategy and trait.  

Bias and MSE 

True breeding values were known in the simulation. The average difference 

between the true and the predicted GBVs in the testing population provided 

a measure of the bias in the genomic predictions for each selective 

genotyping strategy. In addition, regression coefficients of traditional on 

genomic breeding were calculated for the SiresDYD strategy. Mean square 

error (MSE) of the estimator was calculated as prediction error. MSE was 

used as a risk function to quantify differences between the estimator and the 

true value.  

In addition, regression coefficients of true on estimated genomic breeding 

values were estimated, averages and standard deviations of intercepts, slopes 
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and coefficients of determination were calculated for all considered 

strategies and sample sizes. Regression coefficients are usually considered as 

bias predictors when true breeding values are not known. 

Results  

Simulated population 

In both scenarios (heritability either 0.10 or 0.30), the average LD (r2 

between adjacent markers) in generations 11 through 15 (training and testing 

sets) was 0.31. High LD values were observed only at small distances 

between pairs of SNPs (Figure 2.3). All chromosomes were simulated using 

the same parameters, and therefore, differences between them were not 

expected.  

In the medium- and low-heritability scenarios, the average inbreeding 

coefficients in the last generation were 0.03 and 0.05, respectively, and the 

average accuracies of the pedigree indices were 0.35 (sd=0.05) and 0.41 

(sd=0.04), respectively. 
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Figure 2.3. Distribution of r2 between single-nucleotide polymorphism (SNP) 
pairs and physical distance: (a) chromosome 1 for the 0.10 heritability trait and 
(b) chromosome 7 for the 0.30 heritability trait.  

Accuracy of genomic evaluations  

The accuracy of genomic evaluations depended on the selective genotyping 

strategy used for the training set (Figure 2.4).  

The predictive accuracy of the medium-heritability trait was greater than the 

accuracy of the low-heritability trait. As the size of the training populations 

increased, accuracies reached upper limits of approximately 0.75 (h2=0.30) 

and approximately 0.70 (h2=0.10). In the low- and medium-heritability traits, 

the accuracies of the SiresDYD strategy were 0.48 and 0.55, respectively, 

which indicated 37% and 34% increases, respectively, in accuracy relative to 

the accuracies of the pedigree indices (0.35 and 0.41, respectively).  
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Figure 2.4 Estimated accuracies for genomic breeding values for two different 
heritabilities (0.10 and 0.30) in testing sets when 1000, 2000, or 5000 females in 
the training set were genotyped. The following genotyping strategies were used: 
cows at random (RND), top yield deviation cows (TopYD), top breeding value 
cows (TopBV), two-tailed yield deviation cows (TTYD), two-tailed breeding 
value cows (TTBV), all sires (SiresDYD), and pedigree index without GS. 

 

Only the TTYD and TTBV strategies produced predictive accuracies that 

were better than those of the SiresDYD strategy (Table 2.1). When 1000 

cows were genotyped as training set, in the TTYD strategy, the accuracies 

for low- and medium-heritability traits were 0.50 and 0.63, respectively. In 

the TTBV strategy, the corresponding values were 0.48 and 0.63. 
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Table 2.1. Average differences in the accuracy of predicted GBVs and standard 
deviations (in parenthesis) for each selective genotyping strategya versus the 
SiresDYDb strategy based on the heritability and use of different female 
training sets and population sizes from a contemporary population of 40,000 
animals 

Size of Two-Tailed Values Top Values Random 
 h2 

Training set
Phen. 

(TTYD)c 
EBV 

(TTBV)d 
Phen. 

(TopYD)e 
EBV 

(TopBV)f RNDg 

1000 0.08(0.05) 0.08(0.06) -0.42(0.11) -0.60(0.12) -0.18(0.08) 
2000 0.14(0.07) 0.12(0.07) -0.34(0.08) -0.58(0.13) -0.06(0.05)  0.3  
5000 0.18(0.09) 0.13(0.08) -0.21(0.07) -0.45(0.11) 0.06(0.08) 
1000 0.02(0.02) 0.00(0.08) -0.41(0.09) -0.58(0.09) -0.29(0.07) 
2000 0.11(0.04) 0.01(0.08) -0.38(0.11) -0.55(0.09) -0.16(0.05)  0.1  
5000 0.18(0.06) 0.04(0.07) -0.29(0.07) -0.51(0.06) -0.04(0.06) 

a Genotyping strategies for the training set 
b Results are compared to a male genotyping strategy (SiresDYD), which genotypes all sires in the 
population as the training set (accuracies of the SiresDYD strategy were 0.48 and 0.55 for the 0.10 and 
0.30 heritability traits, respectively). 
cTTYD (Females with yield deviation in the α/2 and 1-α/2 percentile)h. 
dTTBV (Females with EBVs in the α/2 and 1-α/2 percentile)h. 
eTopYD (Females with yield deviation in the 1-α percentile)h. 
fTopBV (Females with EBVs in the 1-α percentile)h. 
gRND (Females selected at random)h. 
h(for α=0.025, 0.05, and 0.125). 
 

In both the low- and medium-heritability scenarios, the use of two-tailed 

yield deviations data from generations 11 through 14 as criteria for the 

selection of animals in the training set produced the highest predictive 

accuracy regardless of the size of the training population. In all of the 

strategies, accuracy improved as the number of records in the training set 

increased. When the size of the training set increased from 1000 to 5000 

genotyped cows, the RND strategy produced a greater increase in accuracy 

than the other strategies. Nevertheless, the accuracies of the RND strategy 

were always less than those produced by the two-tailed strategies. The 

accuracy of the RND strategy was greater than that of the SiresDYD strategy 

only when 5000 cows were genotyped as the training set in the medium-

heritability scenario.  
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Strategies based on the best females (TopYD and TopBV) produced the 

lowest accuracies, and at small training population sizes, the Top strategies 

produced negative values.  

The heritability of the trait affected accuracy (Goddard and Hayes, 2009). 

The populations in our study required more than 5000 cows (12.5% of the 

simulated population) in the training set to achieve accuracy >0.66 in the 

low-heritability scenario. 

Bias and MSE  

Pedigree index predictions were biased in 0.01 trait units, which was lower 

than the values from the genomic predictions. The female-based selective 

genotyping strategies exhibited biases that were between those of the 

SiresDYD and the pedigree index (Table 2.2). Strategies that selected top 

animals only, including SiresDYD, produced more biased estimates than the 

other strategies (e.g., the SiresDYD strategy produced -0.97 and -2.23 for the 

low- and medium-heritability traits, respectively). The TopYD strategy 

produced the most biased estimate for the 0.10 heritability trait, and it gave 

the second-most biased prediction (after SiresDYD) for the 0.30 heritability 

trait (bias=1.74). In the Top and Random strategies, increases in the size of 

the training population reduced the bias. The RND strategy showed bias 

equal to 17% of that found in the SiresDYD strategy.  
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Table 2.2. Bias and mean square error (MSE) of genomic predictions in the 
testing set for different genotyping strategies, training set size and heritability  

Two-Tailed Values Top Values Random   

h2 

Size of 
Genotyped 
Training 

set 
Phen.  

(TTYD)
EBV  

(TTBV) 
Phen. 

(TopYD)
EBV 

(TopBV) RND 
SiresDYDb 

1000 
0.45 

(0.18) 
0.42 

(0.06) 
2.06 

(0.03) 
1.15 

(0.09) 
-0.15 
(0.04) 

-0.97 
(0.12) 

2000 
0.56 

(0.18) 
0.53 

(0.09) 
1.80 

(0.03) 
0.95 

(0.09) 
-0.09 
(0.03)  0.10 

5000 
0.52 

(0.11) 
0.52 

(0.08) 
1.41 

(0.04) 
0.64 

(0.08) 
-0.04 
(0.03)  

1000 
0.45 

(0.10) 
0.35 

(0.06) 
1.74 

(0.02) 
1.28 

(0.06) 
-0.36 
(0.09) 

-2.23 
(0.32) 

2000 
0.57 

(0.10) 
0.43 

(0.08) 
1.48 

(0.03) 
1.04 

(0.07) 
-0.26 
(0.06)  

BIAS 

0.30 

5000 
0.55 

(0.06) 
0.42 

(0.06) 
1.10 

(0.05) 
0.68 

(0.09) 
-0.16 
(0.03)  

1000 
0.51 

(0.27) 
0.38 

(0.04) 
4.32 

(0.09) 
1.41 

(0.19) 
0.10 

(0.02) 
1.00 

(0.24) 

2000 
0.66 

(0.28) 
0.48 

(0.10) 
3.32 

(0.08) 
1.01 

(0.15) 
0.08 

(0.01)  0.10 

5000 
0.55 

(0.16) 
0.44 

(0.09) 
2.05 

(0.09) 
0.52 

(0.09) 
0.07 

(0.01)  

1000 
0.64 

(0.19) 
0.42 

(0.04) 
1.84 

(0.09) 
1.41 

(0.19) 
0.29 

(0.11) 
5.20 

(1.48) 

2000 
0.75 

(0.17) 
0.45 

(0.08) 
1.29 

(0.09) 
1.01 

(0.15) 
0.20 

(0.07) 
 

MSE 

0.30 

5000 
0.63 

(0.09) 
0.40 

(0.06) 
0.66 

(0.08) 
0.52 

(0.09) 
0.14 

(0.01) 
 

aBias measured as the difference between estimated and true breeding values (in genetic value units). 
bGenotyped training set size = 996 animals for the SiresDYD strategy. 

 

The biases in the two-tailed strategies were about 50% and 75% lower than 

those in the SiresDYD with the same training set size (Table 2.2). In the 

two-tailed strategies, an increase in the number of animals in the training set 

did not substantially reduce the bias. All but the RND and SiresDYD 

strategies overestimated the breeding values. To calculate DYD, the 

SiresDYD strategy used the records from the entire female population, 

whereas the Top strategies selected only the cows in the upper tail of the 

distribution, which might be why the SiresDYD showed a bias that was more 
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similar to the RND strategy. Similar patterns were apparent in the MSE; the 

RND and two-tailed strategies produced the lowest MSE. The MSE of the 

RND strategy was similar to that of the pedigree index and lower than that of 

the SiresDYD strategy with the same training set size.  

In addition to bias results, regression coefficients of true on estimated 

genomic breeding values were calculated (Table 2.3, Table 2.4 and Table 

2.5). Because of large differences between replicates for the "top" strategies, 

due to low accuracy, mean values across replicates are not informative.  

Table 2.3.  Averages and standard deviations of intercepts, of genomic 
predictions in the testing set, for different genotyping strategy, training set size 
and heritability regressions 

Two-tailed 
 Values 

 
Top Values Random 

Phen. EBV Phen. EBV 

 

h2

Size of 
Genotyped 
Training  

set 
(TTYD) (TTBV) (TopYD) (TopBV) RND 

 
 

SiresDYDa 

  1000 1.23 1.17 0.22 2.15 1.16 -1.83 
   (0.09) (0.07) (0.95) (0.15) (0.10) (0.10) 
 0.10 2000 1.19 1.13 0.25 1.94 1.04  
   (0.09) (0.06) (1.00) (0.17) (0.10)  
  5000 1.11 1.05 -0.11 1.75 0.88  

Intercept   (0.09) (0.06) (0.73) (0.14) (0.07)  
  1000 2.42 2.22 -2.63 4.59 0.74 2.79 
   (0.26) (0.28) (3.16) (0.54) (0.70) (0.33) 
 0.30 2000 2.32 2.06 -3.21 4.04 0.71  
   (0.19) (0.24) (2.63) (0.51) (0.57)  
  5000 2.12 1.88 -3.77 2.35 0.69  
   (0.17) (0.22) (2.77) (1.22) (0.39)  

aGenotyped training set size = 996 animals for the SiresDYD strategy. 

 

Table 2.4. Averages and standard deviations of slopes of genomic predictions in 
the testing set, for different genotyping strategy, training set size and 
heritability regressions 

 



Chapter 2 

- 104 - 

Two-tailed 
 Values 

 
Top Values Random

Phen. EBV Phen. EBV 

 

h2 

Size of 
Genotyped 
Training  

set 
(TTYD) (TTBV) (TopYD) (TopBV) RND 

 
 

SiresDYDa 

  1000 0.21 0.24 0.38 -0.17 0.33 0.75 
   (0.04) (0.06) (0.29) (0.09) (0.15) (0.23) 
 0.10 2000 0.22 0.25 0.41 -0.10 0.39  
   (0.03) (0.06) (0.30) (0.08) (0.15)  
  5000 0.26 0.28 0.57 -0.03 0.48  

Slope   (0.04) (0.08) (0.27) (0.10) (0.11)  
  1000 0.32 0.37 1.14 -0.17 0.87 1.16 
   (0.04) (0.07) (0.60) (0.14) (0.25) (0.26) 
 0.30 2000 0.33 0.40 1.30 -0.07 0.86  
   (0.05) (0.08) (0.54) (0.19) (0.20)  
  5000 0.38 0.45 1.52 0.30 0.84  
   (0.06) (0.09) (0.60) (0.34) (0.15)  

aGenotyped training set size = 996 animals for the SiresDYD strategy. 

All strategies showed values different than 0 for the intercept and 1 for the 

slope regression as expected for unbiased predictions. In both cases, RND 

strategies were less deviated from the expected values than the TTBV and 

TTYD strategies. Finally, in the comparison between SiresDYD and two 

tailed strategies, averaged intercept estimation was closer to that expected 

for TTBV and TTYD, while the slopes of SiresDYD strategies were notably 

closer to 1 than the slopes of the two tailed strategies.  
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Table 2.5. Averages and standard deviations of coefficients of determination of 
genomic predictions in the testing set, for different genotyping strategy, 
training set size and heritability regressions 

Two-tailed 
 Values 

 
Top Values Random 

Phen. EBV Phen. EBV 

 

h2

Size of 
Genotyped 
Training  

set 
(TTYD) (TTBV) (TopYD) (TopBV) RND 

 
 

SiresDYDa 

  1000 0.26 0.23 0.01 0.01 0.04 0.24 
   (0.11) (0.07) (0.01) (0.01) (0.03) (0.12) 
 0.10 2000 0.35 0.24 0.01 0.01 0.09  
   (0.11) (0.06) (0.02) (0.01) (0.05)  
  5000 0.44 0.27 0.04 0.01 0.20  

r2   (0.11) (0.08) (0.03) (0.01) (0.07)  
  1000 0.41 0.40 0.02 0.00 0.17 0.28 
   (0.09) (0.08) (0.02) (0.00) (0.10) (0.14) 
 0.30 2000 0.47 0.45 0.05 0.00 0.25  
  1000 0.26 0.23 0.01 0.01 0.04 0.24 
   (0.11) (0.07) (0.01) (0.01) (0.03) (0.12) 
 0.10 2000 0.35 0.24 0.01 0.01 0.09  

aGenotyped training set size = 996 animals for the SiresDYD strategy. 

Discussion 

Parameters of the simulated population 

Quality control of the simulation before genomic evaluations was based on 

the LD between adjacent markers, the level of decay in LD with respect to 

the distance between SNPs, inbreeding values and the accuracy of traditional 

genetic evaluations. Simulated values were compared with Holstein real 

data.  The average LD between adjacent markers in dairy cattle is related to 

the accuracy of genomic selection. Values of r2 between 0.20 and 0.31 have 

been reported for different populations (Banos and Coffey, 2010; Habier et 

al., 2010). LD values estimated in our simulation were similar to the values 

reported in Holstein cattle in North America (Sargolzaei et al., 2008). The 

level of decay in LD with respect to the distance between SNPs was also 
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similar to the results observed in real populations (Sargolzaei et al., 2008; De 

Roos et al., 2008). 

Inbreeding values of the simulation were in the range of those reported in 

real dairy cattle populations (Kearney et al., 2004; González-Recio et al., 

2006; González-Recio et al., 2007). Finally, the accuracies of the genetic 

evaluations were within the range of values reported for many traits in dairy 

cattle populations (González-Recio and Alenda, 2005; VanRaden et al., 

2009a). 

Accuracy of genomic evaluations  

Differences between the pedigree index of traditional genetic evaluation and 

the SiresDYD genomic strategy were considered to be part of the simulation 

quality control. These results were similar to those reported in North 

American Holstein bulls (VanRaden et al., 2009a).  

In the female-based strategies, the accuracies achieved using the two-tailed 

strategies (TTYD and TTBV) were greater than those obtained using the 

pedigree index, even at the smallest population size (1000). Compared to the 

SiresDYD strategy, the accuracies for the low- and medium-heritability traits 

derived from TTYD were 38% and 55% higher, respectively, but these 

increases were at the expense of an increase in the training population size 

from 1000 to 5000 animals. Two-tailed selections could be compared with 

the use of divergent lines in QTL detection and genome-wide association 

studies. Use of extreme samples appears to enhance the ability of selection 

procedures to select influential SNPs in genetic association studies. Higher 

accuracies reached by two-tailed strategies are consistent with a broiler 

mortality study by Long et al. (2009), who achieved similar conclusions. 

The TopYD and TopBV strategies required a large number of animals to 

produce accuracies similar to those produced by the other strategies, which 
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suggests that the TopYD and TopBV strategies were the least informative 

and should not be used to create a training population. Lower accuracies of 

Top strategies compared to RND have also been found by Ehsani et al. 

(2010), who compared different selective genotyping strategies and 

concluded that the selection of the best individuals does not provide good 

predictions compared with random selection.  

Accuracy increased with the reference population size. This phenomenon 

has also been observed in previous simulations (Goddard and Hayes, 2009). 

In real populations, Lund et al. (2010) reported average reliability (square of 

accuracy) increases of between 8% and 11%. These results were obtained 

when the number of bulls in the training set was increased from the size of 

national training sets to the 15,966 shared genotypes of the 

EUROGENOMICS consortium (Holland, Finland, Sweden, Denmark, 

France and Germany).  

The strategies based on yield deviations were more accurate than those that 

used EBVs as the selection criteria, which might be due to the low accuracy 

of the EBVs in cows. In the presence of epistasis and dominant effects, the 

strategies based on yield deviations might produce better results for the 

commercial population if the method can identify these effects. The dairy 

cattle industry might be interested in exploiting these effects in commercial 

populations, although dominance is not inherited and only part of the 

epistatic variance is transmitted to progeny. 

Our study was based on a single trait rather than on multiple breeding 

objectives. Genetic evaluations are carried out for several traits, but only 

some of these traits explain the success of sires in the breeding program; for 

example, udder composite is the key trait in sires’ dams (González-Recio et 

al., 2005). Selection of different breeding goals may be reduced to a 

productivity-functionality index selection for 2/3 traits. The extreme 
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individuals exhibiting both traits should be genotyped. Nonetheless the 

genotyping cost for the least profitable individuals must be carefully 

considered  

Bias and MSE  

The results from this study show that genotyping random females in the 

population lead to smaller biased predictions and MSE in the genomic-

assisted evaluations. Genotyping only the top animals of the population, 

including sires, may lead to greater bias and MSE. Regression coefficients of 

true on genomic breeding values were not equal to 1. However, SiresDYD 

coefficients were in the range of similar values reported by other authors 

with real data of small dairy cattle populations (Olson et al., 2011). Female 

strategies showed low values, which could represent a potential problem in 

the application of female base GEBV.  To deal with that problem, larger 

reference population sizes produce less bias and MSE. The RND strategy 

achieved always the smallest bias estimates. It must be pointed out that 

strategies that produced the more accurate predictions (TTYD, TTBV) also 

showed larger bias than the RND strategy. This is an interesting result for 

numerically small populations or when the economic resources for 

genotyping are limited. The genotyping strategy would need to focus either 

on maximizing accuracy or minimizing bias. The best strategy would depend 

on the purpose and organization of the breeding program. For instance, if 

comparison between non contemporaneous animals has to be done, the two 

tailed strategies may have some drawbacks, but they will maximize the 

genetic gain. The two tailed genotyping strategies showed smaller bias and 

MSE than the SiresDYD strategies, suggesting that they might be interesting 

genotyping designs in numerically small populations In addition Patry and 

Ducrocq (2009) detected bias using GS and an underestimation of the 

breeding values when they were estimated based on pre-selected genomic 

animals. That source of bias does not affect our results as the selection was 
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based on traditional breeding values. The estimation methodology and the 

model could be a source of bias in this study.  

Conclusions 

In small cattle populations, Two-tailed selection of females might be an 

advantageous strategy to create the training population in a genomic 

program, in terms of predictive ability, although at the expense of larger 

bias, mainly with small reference population sizes.  

Random selection may be advisable for larger populations due to lower bias 

estimations. In addition, selection based on yield deviations rather than on 

EBVs might be preferable. However, strategies based on genotyping only 

the best cows (e.g., sires’ dams) performed poorly.  

A combination of two-tailed strategies based on the female population and 

the current male genotyping strategy should be considered, although the 

method to combine the DYD from sires and the yield deviations of cows 

must be developed.  

All genotyping strategies considered based on genotyping the best animals 

resulted in biased evaluations, but largest bias was found for the “siresDYD” 

strategy.  
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The use of appropriate methodology is essential for maximizing the benefits 

of genomic selection. Advanced statistical methods for genomic selection 

were compared using data from Spanish Holsteins; these methods included 

SNP regression using Bayesian methods (Bayes-A, Bayesian LASSO), a 

machine learning algorithm for genomic prediction and G-BLUP using the 

genomic relationship matrix. This study compared the performance of these 

methods in terms of their predictive correlations, bias, and mean squared 

error.
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Abstract 

The aim of this study was to evaluate methods for genomic evaluation of the 

Spanish Holstein population as an initial step toward the implementation of 

routine genomic evaluations. This study provides a description of the 

population structure of progeny tested bulls in Spain at the genomic level 

and compares different genomic evaluation methods with regard to accuracy 

and bias.  

Two Bayesian linear regression models, Bayes-A and Bayesian-LASSO (B-

LASSO), as well as a machine learning algorithm, Random-Boosting (R-

Boost), and BLUP using a realized genomic relationship matrix (G-BLUP), 

were compared. Five traits that are currently under selection in the Spanish 

Holstein population were used: milk yield, fat yield, protein yield, fat 

percentage, and udder depth. In total, genotypes from 1859 progeny tested 

bulls were used. The training sets were composed of bulls born before 2005; 

including 1601 bulls for production and 1574 bulls for type, whereas the 

testing sets contained 258 and 235 bulls born in 2005 or later for production 

and type, respectively. 

Deregressed proofs (DRP) from the January 2009 Interbull (Uppsala, 

Sweden) evaluation were used as the dependent variables for bulls in the 

training sets, whereas DRP from the December 2011 DRPs Interbull 

evaluation were used to compare genomic predictions with progeny test 

results for bulls in the testing set. 

Genomic predictions were more accurate than traditional pedigree indices 

for predicting future progeny test results of young bulls. The gain in 

accuracy, due to inclusion of genomic data varied by trait and ranged from 

0.04 to 0.42 Pearson correlation units. Results averaged across traits showed 

that B-LASSO had the highest accuracy with an advantage of 0.01, 0.03 and 

0.03 points in Pearson correlation compared with R-Boost, Bayes-A, and G-
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BLUP, respectively. The B-LASSO predictions also showed the least bias 

(0.02, 0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP, 

respectively) as measured by mean difference between genomic predictions 

and progeny test results. The R-Boosting algorithm provided genomic 

predictions with regression coefficients closer to unity, which is an 

alternative measure of bias, for four out of five traits and also resulted in 

mean squared errors estimates that were 2%, 10%, and 12% smaller than B- 

LASSO, Bayes-A, and G-BLUP, respectively. 

The observed prediction accuracy obtained with these methods was within 

the range of values expected for a population of similar size, suggesting that 

the prediction method and reference population described herein are 

appropriate for implementation of routine genome-assisted evaluations in 

Spanish dairy cattle. R-Boost is a competitive marker regression 

methodology in terms of predictive ability that can accommodate large data 

sets. 
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Introduction 

Genomic selection (GS) is the most promising new technology since 

progeny testing for increasing the rate of genetic gain in dairy cattle (Weigel 

et al., 2010). It is based on simultaneous selection for thousands of single 

nucleotide polymorphisms (SNP). Direct genomic breeding values (DGVs) 

can be calculated as the sum of the effects of individual SNPs across the 

entire genome or genome-enhanced predictions can be computed by 

augmentation or replacing the traditional pedigree relationship matrix with 

the realized genomic matrix (Goddard, 2009). Typically, SNP effects are 

first estimated in a training or reference population and then used to predict 

the breeding values of new selection candidates (Hayes et al., 2009b). 

In dairy cattle, GS has caused profound changes in practical breeding 

programs, because nearly all young bulls acquired by major artificial-

insemination (AI) centers are now selected based on such evaluations 

(Wiggans et al., 2011). In addition, females can be evaluated with cost-

effective genotyping strategies (Weigel et al., 2012), leading to genomic 

predictions with a similar reliability to that of young bulls. 

National and international genetic evaluations of dairy cattle consider nearly 

two dozen phenotypic traits (VanRaden and Sullivan, 2010) and the 

inclusion of additional, complex traits is expected within the next decade. 

These new traits may include measures of disease resistance and residual 

feed intake (González-Recio and Forni, 2011; Pryce et al., 2012), and 

evaluation may consider crossbreed performance (Toosi et al., 2010), and 

genotype by environment interaction effects (Hayes et al., 2009a). 

Several different approaches are currently used for estimating genomic 

values, and it is important to assess the performance of diverse 

methodologies and identify the methods that can provide the greatest 

predictive accuracy in a given population. Genomic prediction methods can 
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be categorized as: 1) methods that regress phenotypic records on SNP 

markers directly, and 2) methods that view genetic values as a function of 

the subject and use marker information to build the (co)variance structure 

between subjects (De los Campos et al., 2009). The first group of methods 

includes several Bayesian regression approaches, such as Bayes-A, Bayes-B 

(Meuwissen et al., 2001), and the Bayesian least absolute shrinkage selection 

operator (B-LASSO), as described by Park and Casella (2008). These 

regression-based methods are usually implemented after traditional BLUP 

genetic evaluation of the reference population, and the resulting breeding 

value estimates are then used directly or deregressed prior to use as a 

dependent variable in the genomic evaluation (VanRaden, 2008). In general, 

these methods are computationally time-consuming if the number of SNPs is 

large, and this could preclude their utilization in routine evaluation programs 

in some countries, despite the fact are used in some countries as The 

Netherlands. The second group includes methods that compute a realized 

relationship matrix from the markers, such as G-BLUP (VanRaden et al., 

2009b), or single step (Misztal et al., 2009) methods, to augment or replace 

the traditional pedigree based relationship matrix. The Single-step method 

includes all pedigree and genomic information and avoids the need to 

subsequently combine the genomic and traditional breeding values (Aguilar 

et al., 2010). The performance of alternative genomic evaluation 

methodologies can vary depending on the trait and population structure 

(Daetwyler et al., 2010).  

In addition to the afore-mentioned approaches, an alternative for dealing 

with large data sets and complex interactions between SNPs is machine 

learning algorithms (Long et al., 2007). Machine learning methods usually 

compare favorably to Bayesian regression models in terms of predictive 

ability (e.g., González-Recio et al., 2008; Moser et al., 2009; González-

Recio and Forni, 2011). Non-parametric or semi-parametric methods of this 
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type can be implemented by regressions on markers (e.g., Boosting as in 

González-Recio et al., 2010)) or by building appropriate (co)variance 

structures (e.g., Reproducing Kernel Hilbert Spaces regression, (Gianola and 

van Kaam, 2008). Boosting algorithms are among the most appealing 

machine learning methods for genomic-prediction problems (Ogutu et al., 

2011), and in a recent study they provided greater predictive ability and 

smaller bias than other methods (González-Recio et al., 2010). Efficiency of 

DGV prediction in dairy cattle can be enhanced by modification to the 

algorithm, specifically Random Boosting (R-Boost), as is described in a 

companion paper(González-Recio et al., 2013.). These modifications allow 

prediction of genomic values with SNP regression methods in very large 

data sets. 

Over the last decade the Spanish breeding program has provided competitive 

bulls for the national and international markets due to a robust milk-

recording scheme. Special care has been taken in recording morphologic 

traits. GS has revolutionized dairy cattle breeding since 2009. Taking 

advantage of this technology is necessary to maintain the program’s 

viability. 

The objective of this study was to use genotypic and phenotypic data from 

the Spanish Holstein population to compare several popular genomic 

evaluation methodologies. Two different Bayesian linear regressions (Bayes-

A and B- LASSO), G-BLUP, and a machine learning algorithm (R-Boost) 

were compared. Five phenotypic traits were considered, and methods were 

evaluated based on predictive correlations, bias, and mean squared error. 
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Material and methods 

Genotypes  

A total of 1859 progeny-tested sires were genotyped. The BovineSNP50.v2 

Beadchip (Illumina, San Diego, CA), was used to genotype 54,609 SNPs of 

1619 Sires, whereas the remaining 240 sires were genotyped for 54,001 

SNPs using the BovineSNP50.v1 Beadchip.  

SNPs with a greater than 5% incidence of missing genotypes across 

individuals and SNPs with minor allele frequency (MAF) less than 5% were 

discarded, leaving only 39,714 SNPs for the analysis. Some animals had 

missing genotypes for certain markers; after editing, 0.01% of the SNPs 

were missing. Missing genotypes were then imputed with BEAGLE 

3.3.2(Browning and Browning, 2009). In a pilot study, known SNP’s were 

masked mimicking missing marker rate of the population. Resulted 

imputation allele error ratio was 0.008. 

Linkage Disequilibrium Estimation 

The haplotypes obtained by Beagle prior imputation were used to estimate 

the degree of linkage disequilibrium (LD) between SNPs; all genotyped 

bulls were used in this calculation. LD, which refers to the non-random 

association of alleles between two loci, was measured using the r2 parameter 

(Hill and Robertson, 1968). LD can be estimated using other methods, such 

as D, D´ or measures based on the Chi-squared statistic (Zhao et al., 2005); 

however, r2 is the most common measure of LD for biallelic markers and is 

less sensitive to the effects of allelic frequency than other methods 

(Sargolzaei et al., 2008). 
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Phenotypes  

The January 2009 de-regressed MACE proofs (DRP) from progeny testing, 

as described in Jairath et al. (1998), were used as dependent variables and 

included 1859 bulls for production and 1810 for type. The production and 

type data were collected from progeny between 1980 and 2008. Sire’s DRP 

for milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), 

and udder depth (UD) were used. The estimated heritability based on 

traditional genetic evaluations in Spain is 0.28 and 0.30 for production traits 

and udder depth, respectively. 

Training and Validation Data Sets 

Training and validation data sets were generated based on year of birth of the 

bulls. A total of 1601 bulls with DRP in January 2009 that were born before 

2005 were used for the production training set, whereas 1574 bulls from the 

same period were used for the type training set. Bulls born between 2005 

and 2007 were used as the validation set; 258 bulls were used for production 

traits and 236 were used for type. Effective daughter contributions (EDC) 

were used as weighting factors to account for differences in progeny group 

size when computing genomic predictions (Jairath et al., 1998).  Bulls in the 

testing sets had their DGV in December 2011 that were based on 20 or more 

EDC. Design of the training and testing sets followed the recommendations 

of (Mäntysaari et al., 2010); although the recommended four years gap 

between training and testing sets was reduced to three years due to small size 

of the reference population, thereby leaving more training set bulls maximize 

the accuracy of estimated DGV.  
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Genomic Evaluation Model 

The general structure for the models in linear form is: 

y n j j
j

gμ= + +∑1 X e
 , 

where y is the vector of phenotypic records, µ is the overall mean, 1n is a 

vector of n ones, ∑j is a summation over all markers, gj is the coefficient of 

marker j denoting the allele substitution effect, Xj is a design matrix of 

genotype codes for the respective marker, and e is a vector of residuals. 

The data were analyzed using four different approaches: two models based 

on marker regression (Bayes-A and B-LASSO), a method based on a 

realized relationship matrix from the markers (G-BLUP) and a machine 

learning algorithm (R-Boost), which is described in the companion paper 

(González-Recio et al., 2013). 

Bayes-A 

Bayes-A was introduced by (Meuwissen et al., 2001). This method assumes 

that marker effects ( ) are normally and independently distributed a priori 

as
2(0, )

jgN σ=
, where 

2
jgσ
 is an unknown variance associated with marker 

j. The prior distribution of the variances of the SNPs was a scaled inverted 

chi-squared distribution,
2 2

( , )~j df ssXσ −

, where ss is the scale parameter and df 

represents the degrees of freedom. The parameters ss and df were considered 

as hyper-parameters and were fixed for each trait as in Gianola et al. (2009). 

An improper prior was assumed for µ. Following (González-Recio et al., 

2009), the residuals, e, were assumed to be distributed as 
1 2(0, )eN R N σ−= , 

where N = {ni} is a diagonal matrix with elements ni representing the 

corresponding EDC of sire i, and 
2
eσ  is the residual variance. The prior 
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distribution for the residual variance
2
eσ  was assumed to be an inverted chi-

squared distribution with hyper-parameters df and ss. The Gibbs sampler 

was run for 10,000 cycles, with the first 1,000 cycles of burn-in discarded. 

Convergence of the chain was checked by visual inspection, and inferences 

on the parameters were made on the mean posterior estimates after burn-in. 

Bayesian- LASSO 

The Bayesian counterpart of the LASSO model (De los Campos et al., 2009; 

Park and Casella, 2008) was also used to estimate SNP coefficients in the 

training population. The B-LASSO can be viewed as an optimization 

problem, using the sum of the absolute values of the regression coefficients 

(L1-norm) as a penalty, in the following regression model (Tibshirani, 

1994): 

' 2min ( ) ( ) | |y j j j
j

tβ

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
∑ ∑X β βλ , 

where X is a vector of covariates, β is the corresponding vector of regression 

coefficients and λ is a smoothing parameter controlling the shrinkage of the 

distribution. 

The LASSO estimates can be interpreted as the posterior mode in a Bayesian 

model considering a double Laplace prior for the coefficient estimates, as: 

| |

1

( )
2

j
p

j

e λ βλπ β −

=

=∏  ,  

as put forth by (Park and Casella, 2008), the smoothing parameter λ was 

assigned a prior distribution gamma (a, b). Values of the hyper-parameters of 

the prior distribution were set at 5.0 and 1.0, respectively for convenience.  

The Laplace distribution results in stronger shrinkage of marker coefficients 

towards zero than Bayes-A. This prior gives each coefficient βj a high 
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probability of being near zero while simultaneously giving some coefficients 

a chance to have large effect (Yi and Xu, 2008). In practice, this produces a 

similar outcome to variable selection (De Los Campos et al., 2010). Flat 

prior was assumed for μ. The prior distribution for the residual variance 
2 ,eσ   

was assumed to be an inverted chi-squared distribution with hyper-

parameters df and ss and was weighted by the number of progeny of each 

bull, as detailed for the previous method. A single chain of Gibbs sampling 

was run using 25,000 iterations and a burn-in period of 15,000. The 

convergence of the chain was checked by visual inspection, and inferences 

on the parameters were made on the mean posterior estimates after burn-in. 

G-BLUP 

The G-BLUP is the most similar to traditional BLUP evaluations of 

the four alternatives considered herein. If many QTL exist with effects that 

are normally distributed with constant variance, the pedigree relationship 

matrix can be replaced with the genomic relationship matrix (G) where the 

latter is built from molecular information. Pairs of individuals sharing the 

same genotype for a large number of markers will be more similar 

genomically, and will have higher values in the corresponding off diagonal 

cells of the matrix, as is the case for pairs of related animals in a pedigree-

based relationship matrix. The genomic relationship matrix was computed as 

' ,
2 (1 )i i

ZZG
p p

=
−∑

 following (VanRaden, 2008), where a more detailed 

description of this model is provided. 

Random-Boosting 

The boosting algorithm is a machine learning technique that combines 

several different predictors and a shrinkage factor (Friedman, 2000). 

Boosting iteratively adds basis functions, such that each addition further 
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reduces the selected loss function (Hastie et al., 2005). In this study, ordinary 

least squares was chosen as the basis function, and it was successively 

applied to the residuals of the previous iteration in a sequential manner. The 

mean squared error (MSE) of prediction was used as the loss function to be 

minimized. Details of the algorithm are described in the companion paper 

(González-Recio et al., 2013). Following their results, v was set to 0.10 for 

production traits and 0.20 for type, while the percentage of SNPs selected at 

each iteration (mtry) was set to 0.50, 0.10, 0.01, 1.00 and 0.10 for MY, FY, 

PY, FP and UD, respectively.  

Estimation of Direct Genomic Values  

The DGVs for each trait were calculated for individuals in the testing set as: 

ˆ
j jDGV μ= + X β ,  

where μ  is the overall mean, jX  is a matrix of genotypes and jβ̂  is a 

vector of posterior means of SNP effects for each of the four methods. For 

the R-Boost method,  jβ̂  represents the sum of the slope estimates from the 

model in which SNP j was selected.  

 

Criterion for Comparisons 

The accuracy of the genomic predictions was computed as the Pearson 

correlation between the predicted DGV of bulls in the testing set and their 

December 2011 DRP. Sire - maternal grandsire - maternal great grand sire 

index for sires in the testing set was used as a benchmark. It was calculated 

as 50% of the sires DRP, 25% of the maternal grand sires DRP and 12.5% of 

the maternal great-grand sires DRP. For simplicity we refer to these values 

as Sire-Pedigree Index (Sire-PI). Estimated accuracies were adjusted by 

EDC following the recommendations of (Mäntysaari et al., 2010). 
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The average difference between 2011 DRP and the predicted DGVs in the 

testing population provided a measure of bias in the genomic predictions; 

this bias estimate was standardized. Coefficients of regression of realized 

December 2011 DRP on estimated DGV were also calculated, because this 

parameter is also commonly used as a measure of prediction bias in genomic 

evaluations (Mäntysaari et al., 2010). Finally, MSE of prediction, which is 

linked to bias, slope and accuracy, was also estimated. 

Results and discussion 

Summary of genomic data 

The distribution of genotyped bulls, by year of birth, is shown in Figure 3.1. 

Most of the bulls were born after 1990, thereby providing a recent reference 

population for prediction of genomic values of young animals. It is well 

known that GS results in higher responses for the generations closer to the 

reference population (Goddard, 2009).  

After filtering, the distribution of MAF was nearly uniform with a mean of 

0.28 (Figure 3.2). The average distance between adjacent SNPs was 0.06 

Mb, and SNPs had average heterozygosity of 0.29. Linkage disequilibrium, 

between adjacent SNPs, measured as r2, was 0.24. All values were in the 

range reported previously values for other Holstein populations (Banos and 

Coffey, 2010; Habier et al., 2010; Wiggans et al., 2009a). 
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Figure 3.1. Number of genotyped bulls by year of birth. 

  
Figure 3.2. Distribution of minor allele frequencies (MAF) of the SNPs after 
quality control. 

The Figure 3.3 shows the average r2 between SNP pairs plotted against the 

map distance of up to 1 Mb and shows the standard deviations for the 

average r2 values across all 30 chromosomes. Average r2 decreased 

exponentially with increasing distance between SNPs and was equal to 0.40, 

0.24, 0.16 and 0.08 at distances of 0.01, 0.05, 0.1 and 1 Mb, respectively. 

The level of decay in LD with respect to the distance between SNPs was also 
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similar to results from other populations (Habier et al., 2010; de Roos et al., 

2009).  

  
Figure 3.3. Average linkage disequilibrium (measured as r2) and confidence 
interval (estimated by R package gplots) between syntenic markers with respect 
to their physical distance. 

Accuracy 

Traditional Sire-PI accuracies ranged from 0.37 to 0.51 (Table 3.1). 

Predicted DGV showed higher accuracies than Sire-PIs, regardless of the 

genomic prediction model, with an average increment of 49%, ranging from 

9% for UD to 83% for FP. Similar results have been reported previously in 

other Holstein populations (Moser et al., 2010; VanRaden et al., 2009b), 

indicating that selection of young animals based on genomic predictions is 

preferable to selection based on traditional pedigree information.  

Among methods, B-LASSO provided the highest Pearson correlations for 

MY (0.60), FY (0.61) and PY (0.57), as well as the highest Pearson 

correlation averaged across traits. Bayes-A provided greater accuracy for 

UD (0.56) and was equivalent in accuracy to B-LASSO for FY (0.61). R-

Boost achieved the greatest Pearson correlation for FP (0.81), whereas G-

BLUP achieved the same accuracy as B-LASSO for PY (0.57). In general, 
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differences in accuracy between methods were small for MY, FY, PY and 

UD but larger differences were found for FP. For instance, R-Boost 

outperformed GBLUP by 0.19 units of Pearson correlation for FP. Pearson 

correlation coefficients averaged across traits were 0.61, 0.60, 0.58, and 0.58 

for B-LASSO, R-Boost, Bayes-A, and G-BLUP, respectively. 

Table 3.1. Accuracy, standardized bias in means, bias in regression coefficients 
and mean squared error (MSE) of genomic predictions for different evaluation 
methodologies and five traits of economic interest in Spanish dairy cattle 

Methods1 
Milk Yield 

 (MY) 
Fat Yield 

 (FY) 

Protein 
Yield  
(PY) 

Fat 
Percentage 

 (FP) 

Udder 
Depth 
 (UD) 

Accuracy      
Sire-PI 0.37 0.37 0.40 0.39 0.51 

B- LASSO 0.60 0.61 0.57 0.74 0.55 
Bayes-A 0.55 0.61 0.55 0.65 0.56 
R-Boost 0.54 0.60 0.50 0.81 0.54 
G-BLUP 0.58 0.59 0.57 0.62 0.55 

Bias in means      
B- LASSO 0.04 -0.05 0.05 0.01 -0.06 
Bayes-A 0.07 -0.07 0.02 -0.04 -0.11 
R-Boost -0.01 -0.09 -0.02 0.01 -0.22 

G- BLUP -0.19 -0.15 -0.16 0.14 0.06 
Bias in 

Regression 
coefficients      
B- LASSO 0.73 0.80 0.70 1.06 0.63 
Bayes-A 0.58 0.78 0.67 0.79 0.69 
R-Boost 0.87 0.99 0.80 1.19 0.82 

G- BLUP 0.71 0.80 0.70 1.02 0.64 
MSE      

B- LASSO 239992 398 206 0.03 0.95 
Bayes-A 289122 404 215 0.04 0.90 
R-Boost 247593 395 216 0.03 0.92 

G- BLUP 269619 423 219 0.04 0.95 
In bold: The preferred method within trait and comparison criteria. 
1Methods: Sire-PI (Traditional pedigree index), B- LASSO (Bayesian LASSO), Bayes-A, R-Boost 
(Random Boosting) and G-BLUP 
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In a previous study based on simulated and growth data in mice, Usai et al. 

(2009) showed slightly greater accuracy with B-LASSO compared with G-

BLUP and Bayes-A. Cleveland et al. (2010) reported a similar predictive 

ability for B-LASSO and two variants of Bayes-A in simulated data; 

however, the authors observed better performance of B-LASSO for traits 

that were regulated by many QTL with small effects. Legarra et al. (2011) 

reported slightly greater accuracies for B-LASSO than G-BLUP, but slightly 

better for B-LASSO. G-BLUP on real data showed reliabilities of 63% 

compared to 32% from pedigree index on the combined trait Net Merit 

(VanRaden, 2008). Others found higher or similar accuracies using GBLUP 

than using Bayes B (Luan et al., 2009; Mrode et al., 2010). 

There were no relevant differences between R-Boost and the additive models 

based on marker regression, except for FP. Although machine learning 

techniques are expected to accommodate cryptic relationships in the data, the 

use of dependent variables that represent previously computed (additive, 

linear and smoothed), sire EBVs could mask such differences. R-Boost 

seems to provide some advantages over Bayesian regression when a small 

number of QTL regulate the trait under purely additive regulation 

(González-Recio and Forni, 2011). In the present study, genomic predictions 

from R-Boost were more accurate for traits controlled by single genes that 

explain a large proportion of the genetic variance (e.g., DGAT1 for FP). 

Note that differences exist in accuracy for the R-Boost method between the 

results of this manuscript and the companion paper (González-Recio et al., 

2013), presumably due to the adjustment for number of progeny in the 

present paper as suggested by (Mäntysaari et al., 2010). 

Bias in the Mean 

The DGV of bulls in the testing set showed an average deviation over the 

realized DRP of 0.08 genetic SD across methods and traits, with averages 
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ranging from 0.05 (FP) to 0.11 (UD). Increasing size of the reference 

population may alleviate this problem (Liu et al., 2011; Lund et al., 2011). 

Standardized bias showed greater differences between methods than Pearson 

correlations. R-Boost resulted in nearly unbiased predictions for MY and FP 

and also produced the least bias for PY, whereas B-LASSO, produced the 

least bias in predictions for FY, FP and UD. Bayes-A showed a similar bias 

to R-Boost for PY. G-BLUP tended to provide, more biased predictions for 

all traits, with the exception of UD. The Methods with greater Pearson 

correlation can also produce more biased predictions; so both accuracy and 

bias should be considered when deciding which method has greater 

predictive ability. Therefore, MSE may be a more appropriate comparison 

criterion than the Pearson correlation, as it combines accuracy and bias. 

When the genomic predictions of young bulls are compared with highly 

reliable, progeny-tested bulls, biases from genomic predictions must be 

taken into account. In addition, genomic predictions of future performance 

are expected to be biased when only genomically pre-selected bulls are 

allowed to produce offspring (Patry and Ducrocq, 2011). This was not the 

case for bulls included in the present study, as they were genotyped after 

selection.  

Bias in Regression Coefficients 

The coefficients of regressing realized DRP on estimated DGV are 

commonly used as a measure of bias in genomic evaluations. The expected 

value for this slope coefficient is unity if evaluations predict the actual 

magnitude of differences between bulls, if the genotyped young bulls are a 

representative sample of the bulls in the population. However, the genotyped 

young bulls are typically pre-selected by the AI centers based on their EBV 

or Sire-PI (Mäntysaari et al., 2010). In our study, regression coefficients 

ranged between 0.58 for Bayes-A (MY) and 1.19 for the R-Boost (FP). R-
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Boost provided slope coefficient closest to unity for four of the five traits 

(0.87 for MY, 0.99 for FY, 0.80 for PY and 0.82 for UD). Bayes-A provided 

the smallest coefficients for all traits, except UD, whereas B-LASSO and 

GBLUP produced similar coefficients that exceeded unity only for FP. 

These Regression coefficients were within the range reported in other studies 

in similar dairy cattle populations (Olson et al., 2011; Tsuruta et al., 2011). 

Some authors have suggested inclusion of a polygenic effect to address this 

problem (Liu et al., 2011), because this modification could reduce the 

overestimation of DGV. Low coefficients of regression for MY, PY and UD, 

could be possibly explained by higher selection on these traits compared 

with FY and FP. 

MSE 

The MSE can be viewed as a risk function that incorporates both the 

predictive variance and bias of an estimator. B-LASSO and R-Boost 

provided smallest MSE for all traits except UD, where Bayes-A 

outperformed the other methods. For instance, regarding MY Bayes-A 

showed 20% and 17% greater MSE than B-LASSO and R-Boost, 

respectively. G-BLUP also showed greater MSE (from 5 to 12%) for MY 

and FY, as compared with B-LASSO and R-Boost. R-Boost was the 

preferred method across traits in terms of MSE providing the smallest MSE 

on average, followed by B-LASSO, Bayes-A, and G-BLUP respectively. 

In a previous study, (Verbyla et al., 2009) showed similar differences in 

MSE between Bayesian regression models and G-BLUP. Their study 

reported larger MSE than the present results for the Spanish population, 

perhaps due to their smaller reference population (1098 progeny tested 

bulls). As stated previously, MSE reflects both bias and accuracy, but, it is 

often ignored when comparing genomic evaluation methods.  
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Conclusions 

Implementation of GS in the Spanish Holstein breeding program will 

improve selection efficiency for both AI centers and commercial farms, and 

identification of superior animals at young ages will be more accurate than 

was previously believed possible. 

The descriptors of the genomic structure of the population used in this study 

showed that the Spanish population is similar to other Holstein dairy cattle 

populations, as expected. Based on this similarity, genomic evaluations of 

genotyped animals for recorded traits included in the milk recording scheme 

should be feasible. 

Different prediction methodologies, including non-parametric, implemented 

in this study showed similar predictive ability, and the optimal method was 

sometimes trait dependent. In general B-LASSO was preferable in terms of 

Pearson correlations, and R-Boost provided regression coefficient estimates 

closest to unity. Both methods outperformed Bayes-A and G-BLUP in terms 

of predicted MSE. Methods that provided higher Pearson correlations also 

showed large biases, so MSE may be a more appropriate comparison 

criterion than Pearson correlations. Marker regression methods outperformed 

G-BLUP in terms of MSE due to larger bias in GBLUP estimates. Lastly the 

R-Boost method may provide computational advantages over B-LASSO and 

Bayes-A 

Future collaborations with the EUROGENOMICS consortium, which has a 

reference population of more than over 20,000 progeny-tested bulls, is 

expected to substantially increase the accuracy of genomic predictions for 

Spanish Holsteins. Here the R-Boost method is expected to show some 

computationally advantages over B-LASSO and Bayes-A 
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The expectations raised by genomic selection have caused that many more 

individuals have already available genotypes. The different consortia created 

worldwide have provided genetic evaluation units with several thousands of 

genotyped individuals. This study proposes a machine-learning algorithm to 

implement routine genome-assisted evaluation in a feasible manner with 

reasonable computation times, with no impaired predictive ability. 



 

- 144 - 



The gradient boosting algorithm and random Boosting for genome-assisted evaluation in large data sets 

- 145 - 

Abstract 

In the next few years, with the advent of high density SNPs arrays and 

genome sequencing, genomic evaluation methods will need to deal with a 

large number of genetic variants and an increasing sample size. The boosting 

algorithm is a machine learning technique that may alleviate the drawbacks 

of dealing with such large data sets. This algorithm combines different 

predictors in a sequential manner with some shrinkage on them, each 

predictor is applied consecutively to the residuals from the committee 

formed by the previous ones, to form a final prediction based on some subset 

of covariates. Here, a detailed description is provided, and examples using 

toy data are included. A modification of the algorithm called “random 

boosting” was proposed to increase the predictive ability and speed up 

computation time of genome- assisted evaluation in large data sets. The 

random boosting uses a random selection of markers to add a subsequent 

weak learner to the predictive model. These modifications were applied to a 

real data set composed by 1797 bulls genotyped for 39,714 SNPs. De-

regressed proofs of four yield traits and one type trait from January 2009 

routine evaluations were used as dependent variables. A 2-fold cross 

validation scenario was implemented. Sires born before 2005 were used as a 

training sample (1576 and 1562 for production and type traits, respectively), 

whereas younger sires were used as a testing sample to evaluate predictive 

ability of the algorithm on yet to be observed phenotypes. Comparison with 

the original algorithm was provided. The predictive ability of the algorithm 

was measured as Pearson correlation between observed and predicted 

responses. Further, estimated bias was computed as the average difference 

between observed and predicted phenotype. 

The results showed that the modification of the original boosting algorithm 

can be run in 1% of the time used with the original algorithm, and with 

negligible differences in accuracy and bias. This modification may be used 
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to speed up the calculation of genome-assisted evaluation in large data sets 

such us those obtained from consortia. 
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Introduction 

In the last years, several methods have been proposed to incorporate high 

density marker information in the genetic evaluations (Aguilar et al., 2010; 

Gianola et al., 2006; González-Recio et al., 2008; Meuwissen et al., 2001). 

These methods are based on either linear regression on the marker effects 

(e.g. Bayes B, Bayesian LASSO) or in genomic covariance between 

genotyped individuals (e.g. GBLUP, Single Step GBLUP). These methods 

are supposed to deal with the curse of dimensionality problem, although 

some concerns have been raised about their convenience to analyze high-

dimensional data (Gianola et al., 2009). Non-parametric model from the 

machine learning repository have been proposed as an alternative in 

genome–assisted evaluations because they are able to extract hidden 

relationships from large, noisy and redundant data and do not follow a 

particular parametric design. For instances, reproducing kernel Hilbert 

spaces (González-Recio et al., 2008), Radial basis functions (Long et al., 

2010), random forest (González-Recio and Forni, 2011) neural networks 

(Gianola et al., 2011) or the boosting algorithm (González-Recio et al., 

2010) have already been implemented in this context. In general, previous 

results showed that non-parametric methods have similar or better predictive 

accuracy than regression on SNPs and genomic relationship matrices. 

Further, machine-learning methods are attractive and flexible for the 

implementation of genome-assisted evaluation using high-density SNP 

arrays. SNP chips include more and more SNPs, and sequence data may 

soon be available increasing the computation requirements. Thus, new 

strategies need to be developed to deal with reference population samples 

with a larger number of genotyped individuals with chips including an 

increasing number of SNPs.  

The gradient boosting algorithm (BOOST) is an interesting alternative in a 

genome-assisted evaluation context when many more animals and markers 
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are genotyped or sequenced, because it performs variable selection, uses 

simple regression models in an additive fashion and is computationally fast 

and easy. BOOST is a machine learning algorithm classified as an ensemble 

method. It was first proposed by Freund and Schapire (1996) for 

classification problems and was known as AdaBoost. Since then, it has been 

utilizes in many fields showing similar or higher predictive accuracy than 

traditional methods both in classification and regression problems. The 

boosting algorithm has been previously used in the genome wide prediction 

of genetic merit and disease susceptibility in animal breeding ( González-

Recio et al., 2010; González-Recio and Forni, 2011), and also showed 

similar or higher accuracy than other methods such as Bayes A or Bayesian 

LASSO. The algorithm uses a reference data set to find a predictive model 

which, given some genotype markers (e.g. SNP), predicts the most likely 

genetic merit for individuals yet to be observed. It does not assume any 

particular mode of inheritance or parametric model, and as commented 

above, is suitable to analyze very high-dimensional, redundant and fuzzy 

data like high-density SNP chips. 

Nonetheless, BOOST, just as any other method used in a genome-assisted 

evaluation context, has yet to deal with the estimation of regression equation 

on markers when several thousand genotyped animals are used in the 

reference population (VanRaden et al., 2011), such as in the case of the 

EuroGenomics consortium in which more than 22,000 genotypes are already 

available as a reference population. These methods need to be adapted or 

modified to be implemented in the new era of genomic evaluations with 

many more genotypes and phenotypes, to predict genetic merit of young 

sires and cows in an accurate manner with minimum computer requirements. 

The objective of this article is to provide a comprehensive description of the 

boosting algorithm in a genome-assisted genetic evaluation context, and to 
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propose modifications thereof to deal with the larger number of genotypes 

and phenotypes in genomic evaluations. 

The manuscript is organized as follows: first a brief description of ensemble 

methods is provided, then the gradient boosting algorithm is detailed in a 

genome-assisted evaluation context. The implementation of gradient 

boosting is illustrated in a toy example using two different base regression 

functions (ordinary least square and reproducing kernel Hilbert space 

regression). A modification of the algorithm is proposed for its 

implementation in the genome-assisted evaluation with many more 

phenotypes and genotypes. Finally, this modification is applied to a real data 

set and compared to the original BOOST. Comparison with other methods 

commonly used in this context is provided in a companion paper (Jiménez-

Montero et al., 2013) in a real genomic evaluation problem. 

Methods 

Brief description of ensemble methods 

Ensemble methods are a linear combination of some models instead of using 

a single fit of the model (Hastie et al., 2005; Seni and Elder, 2010), that can 

be expressed in the form: 

y = c0 + c1h1(y;X) + c2h2(y;X) + ...+ cmhm(y;X) + ...+ cM hM (y;X) + e 

y = c0 + cmhm(y;X)
m=1

M

∑ + e 

Where hm(y;X) ( m∈ 1,..., M{ }) is some sort of model or function implemented 

on the phenotypes and genotypes in some specified manner, c0
 is the 

population mean and cm
 ( m∈ 1,..., M{ }) are the coefficients or weights for each 

model. Each model hm(y;X)is usually called ‘weak learner’ because they are 

simple models that are supposed to perform slightly better than random 
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guess. It is important to point out that little improvement would be gained 

with a strong learner and computation time would increase significantly. The 

ensemble methods form a “committee” of predictors with potentially greater 

predictive ability than that of any of the individual predictors. They became 

popular as a relatively simple device to improve the predictive performance 

of a base procedure. Random Forest, Bagging or boosting are examples of 

ensemble methods. They have been used in different fields and may be 

implemented in studies using large amount of genomic information. 

Gradient boosting 

Gradient boosting is considered as an ensemble method (Hastie et al., 2005). 

This algorithm combines different predictors in a sequential manner with 

some shrinkage on them (Friedman, 2000). It also performs variable 

selection.  

Gradient boosting, as an ensemble method, may be described as follows: 

eXyy ++= ∑
=

M

m
mvh

1

);(μ  

Each predictor ( );( Xymh  for ),1( Mm∈ ) is added in a sequential manner, and is 

applied consecutively to the residuals from the committee formed by the 

previous ones, weighted by ci≠0=v. This algorithm can be calculated using 

importance sampling learning ensembles as described next: 

(Initialization): Given data ( )Xy, , let the prediction of phenotypes be F0 = y . 

Then, for m in {1 to M}, with M being large, calculate the loss function (L) 

for yi,Fm−1(xi ) + h(yi ;xi, pm)( ) 
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where
mp  is the SNP (only one SNP is selected at each iteration) that 

minimizes L yi,Fm−1(xi ) + h(yi;xi, pm)( )
i=1

n

∑  at iteration m; h(yi;xi, pm) is the 

prediction of the observation using learner h(⋅) on SNP pm. Selection of SNP 

pm
 may be based on the minimization of the loss function L(·) in the training 

set or in a tuning set previously put aside in an n-fold cross-validation 

scenario. 

Next, update the predictions at iteration m in the form 

)( imF x = ),;()(1 miiim pyhvF xx ⋅+−
with v∈(0,1)being some shrinkage factor, e.g. 

v=0.01. 

Each subsequent model is trained on the residuals of the previous one, which 

are actually residual estimates ( ê). These ê are expected to be identical and 

independently distributed as ),0(~ˆ 2
meN σe , where σ em

2  is the residual variance 

for model m. Therefore, the larger M the smallerσ em

2 . This means that for 

larger m, the contribution of the selected SNP at m is expected to be smaller. 

The shrinkage parameter v aims to control this trade off between number of 

models and importance of the SNPs. The smaller v is, the smaller explained 

variance is subtracted at each iteration, and therefore new (or the same) 

SNPs are allowed to explain the remaining residual variance.   

Note that a large variety of learners ( );( Xymh ) and loss functions 

( L yi,Fm(xi )( )) may be proposed, each of them leading to different boosting 

model. For instances, classification and regression trees, generalized least 

squares regression or non-parametric kernel regression may be used as weak 

learners. A quadratic error term, the exponential L1 loss function, the Gini 

index or the Huber loss function are some examples of loss functions that 

may be implemented within the algorithm. 
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The choice of the number of iterations, M, is a model comparison problem 

which may be overcome in many different ways (Friedman, 2000; González-

Recio et al., 2010; Hastie et al., 2005). This parameter may control the 

complexity of the ensemble and the overfitting caused in the training set. A 

simple manner of choosing M is stopping the algorithm when the decrease in 

error rate or mean squared error in a tuning set is not relevant during a large 

enough number of iterations (e.g. 100). Once the coefficient and the weak 

learners have been estimated, predictions for yet-to-be observed records may 

be calculated as: 

∑
=

+==
M

m
imimi hvFy

1

)(ˆˆ)(ˆˆ xx μ . 

More details on the gradient boosting can be found in Freund and Schapire, 

(1996), (Friedman, 2000) and its implementation on genomic prediction in 

(González-Recio et al. (2010).  

Following below is a toy data example to describe the procedure to compute 

predicted genomic merit of genotyped individuals using two different weak 

learners: ordinary least square and RKHS regression. 

Illustrations 

Let 12.95]    20.50    18.41   16.13   21.08 [=y  be the vector of observed 

phenotypes for n=5 individuals. Each individual is genotyped for p=3 SNPs 

codified as 0, 1 or 2 if they share 0, 1 or 2 copies of the most frequent allele 

in the population (as an arbitrary coding example). Let the corresponding X  

matrix be: 

⎥
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⎥

⎦

⎤

⎢
⎢
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⎡
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The mean estimate y  for trait y is 17.81. The algorithm is initialized 

setting 81.170 =F  for all individuals. Note that other environmental effects 

may be included to adjust the phenotype. Let the loss function be the mean 

squared error, and the shrinkage coefficient v=0.9. This value is used only 

for illustration purpose, and a smaller value (e.g. v=0.10) is usually desired. 

Illustration 1: ordinary least square 

Suppose that the weak learner ( h(⋅)) is the ordinary least squares regression 

and the mean squared error (MSE) was assumed as loss function L(·). The 

ensemble will be constructed adding the results of several of these 

regressions. 

The first model, m=1, is estimated as follows: 

The heuristic search begins by trying p=3 models in the form 

eXyy ++= ),;(10 shF s , with }3,2,1{ =∈ ps  

In this case )(⋅h  is a linear regression on SNPs, and the model becomes 

eXy +++= sbaF 110 , where sX  is the column vector of the genotype codes 

for SNP s. 

For simplicity, here the model was solved by least squares estimates, 

although other estimators like Bayesian regression may be used. The 

solutions for each SNP would be: 

For s=1: =1â -1.137 and =1̂b 1.137 with MSE=8.44; 

For s=2: =1â 0.593 and =1̂b -0.370with MSE=8.87; 

For s=3: =1â 2.336 and =1̂b -1.946with MSE=11.07; 
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Hence, SNP s=1 is selected because it was the one minimizing the MSE. The 

new estimates are F̂1 = y+ vĥ1(y, X) , with 1,1 137.1137.1),(ˆ
⋅+−= xXyh . The 

prediction for animal i becomes now: 

ŷi = y+ vâ1 + vb̂1xi,1; with =1â -1.137, =1̂b 1.137 and 1,ix  being the genotype 

code of individual i for SNP 1. 

Note that, again for simplicity, the SNP minimizing the MSE in the same 

data set was selected and used to estimate a and b. In a real scenario, a 

tuning set should be kept apart and the selected SNP could be the one 

minimizing the MSE in the tuning set with â  and b̂  estimated in the training 

set. 

A second model m=2 is then added to the ensemble as: 

eXyy ++= ),;(ˆ
21 shF s ; with }3,2,1{ =∈ ps . The model may be written as 

eXyyr +=−= ),;(ˆ
211 shF s , and the dependent variable in the second model 

are the residuals obtained from m=1: 

⎥
⎥
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⎦
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95.12
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27.3

 

1r      = y  - 1̂F  

The heuristic search begins again by trying p=3 models in the form 

eXyr += ),;(21 sh s , with }3,2,1{ =∈ ps  

As before )(⋅h  is a linear regression on SNPs, and the model for the heuristic 

search is then 
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eXr ++= sba 221 , where sX  is the column vector of the genotype codes for 

SNP s. 

The solutions for each SNP would be: 

For s=1: =2â -0.114 and =2b̂ 0.114with MSE=8.44; 

For s=2: =2â -0.431 and =2b̂ 0.269with MSE=8.40; 

For s=3: =2â 2.336 and =2b̂ -1.946with MSE=6.33; 

The SNP s=3 is selected in m=2 because it was the one minimizing the MSE. 

The new estimates are ),(ˆˆˆ
212 XyFF hv+= , with 3,2 946.1336.2),(ˆ

⋅−= xXyh . 

The prediction model for animal i becomes now: 

ŷi = y+ vâ1 + vb̂1xi,1 + vâ2 + vb̂2xi,3; with =2â 2.336, =2b̂ -1.946 and 3,ix  being the 

genotype code of individual i for SNP 3. 

Subsequently, more models are added by selecting one SNP at each model m 

after the heuristic search is done on residuals 11
ˆ

−− −= mm Fyr  until MSE 

converges. In this case, the algorithm converged at the second decimal 

(MSE=5.71) for M=14, and final predictions were 

ŷi = y+ vâ1 + vb̂1xi,1 + vâ2 + vb̂2xi,3 + ... + vâm + vb̂mxi,m + ... + vâM + vb̂M xi,M . The SNP 

selected at each iteration were [1,3,3,2,1,2,1,3,2,1,2,1,2,1]. The predicted 

genomic merits of individuals in the toy data set were: 

⎥
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For generalization, it can be shown that the non-parametric genomic merit of 

any individual using ordinary least square regression as weak learner is 

ŷ⋅ = y+ v(â1 + b̂1x⋅s1
+ â2 + b̂2x⋅s2

+ ... + âm + b̂mx⋅sm
... + âM + b̂M x⋅sM

), with mâ  and mb̂  

being the intercept and slope coefficient estimates in model m, and 
ms⋅x is the 

vector for the corresponding genotypes codes for SNP selected at model m. 

Here, the intercept estimates can be added to compute a global intercept ( Tâ ) 

that may be interpreted as a bias corrector. 

)ˆ...ˆ...ˆˆ(ˆ 21 MmT aaaava +++++= . 

Then, SNP contribution to the genomic merit ( ⋅xbT
ˆ ) of the individual may be 

expressed as:  

 

where b̂= b̂1, b̂2,..., b̂m,..., b̂M( )  is a row vector of M dimensions containing the 

slope estimates at each model },...,1{ Mm∈ , x⋅ px1 = x⋅1,x⋅2,..., x⋅ j ,..., x⋅ p( )′is the 

column vector with the genotype codes of the individual for the p SNPs, and 

 is an indicator matrix (M x p) with each row m∈ {1,..., M} indicating the 

SNP selected in model m. Each row m contains zero for those positions 

where the corresponding SNP is not included in the model m, and ‘1’ in the 

position of the SNP included in model m. Hence, the non-parametric 

prediction of the genomic breeding value of a given individual would be: 

ŷegbv = âT + b̂Tx⋅
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The global coefficient estimate (
jTb̂ ) for SNP j is the sum of the slope 

estimates in the model in which the SNP j was selected, as  

, where  is an indicator function equal to 1 if the SNP is selected at model 

m and 0 otherwise, and mb̂  is the slope estimate from model m.  

It is clear that Tb̂  is a row vector containing the global coefficient estimates 

for each SNP in the form . 

It must be pointed out that although each mb̂  is calculated from a linear 

function, the sum of all mb̂  lacks of a linear interpretation as each of them is 

calculated from previously corrected phenotypes. 

Predictions of new genomic breeding values for young genotyped 

individuals can be easily calculated using the regression equations obtained 

as described above. 

Illustration 2: kernel regression or RKHS 

Assume now that the weak learner ( h(⋅)) is a non-parametric regression 

(kernel or RKHS) as described in Kimeldorf and Wahba, (1971): 

, 

where y  is the vector of phenotypes, }{ , jik=K is a nxn matrix of kernels, λ is 

a smoothing parameter that may be interpreted as the variance explained by 

the kernel matrix, and  is a column vector of n non-

parametric coefficients. 

Following the reparametrization I in (De los Campos et al., 2009), the model 

equation can be written as follows: 
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, with 2
eσ  being some residual variance. For equivalences 

between RKHS and BLUP see (De los Campos et al., 2009). Both the 

residual variance and λ must be estimated in a RKHS scenario. Maximum 

likelihood or Bayesian estimates from these parameters may be obtained 

using standard procedures. Further, the model may be simplified using a 

kernel regression model as that described in Gianola et al. (2006) without 

needing the estimation of these parameters, using the Nadaraya-Watson 

estimator (Nadaraya, 1964; Watson, 1964). Here, for convenience, a RKHS 

model is proposed but the ratio between 2
eσ  and λ was assumed equal to 1. 

Then, a kernel matrix must be constructed for each SNP. Each matrix 

( sK , }3,2,1{ =∈ ps ) must be semi-positive definite and contains the set of 

quantitative values representing genomic similarities between pairs of 

individuals ( s
jik , ) at a given locus s. A large variety of kernels have proved 

to be useful for genomic data (González-Recio et al., 2009, 2008; Schaid, 

2010). Here, again for simplicity, the allele match kernel was used as 

illustration, the kernel score assays the number of common alleles between 

the locus sof two individuals i and j. The score is 4 if the genotypes of the 

individuals are the same; 2 if one is a heterozygote and the other is a 

homozygote, and 0 if they don’t share any common allele (i.e. molecular 

relationship). 

Therefore, the matrix K s = ki, j
s{ } for each SNP s∈ {1, 2, p= 3}would be: 
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As described in Gianola et al. (2006), González-Recio et al. (2008) and De 

los Campos et al. (2009), the predicted genomic breeding merit of the 

individuals may be computed as , where  are the non-parametric 

coefficient estimates, and *sK  is an mxn kernel matrix containing the 

genomic similarities at a given locus s between the n individuals with 

records and the m individuals whose genomic merit we aim to predict. For 

instance, if we aim to predict the genomic merit of the individuals with 

records ss KK =* , otherwise K s* = ki, j
s*{ }with *

,
s

jik  being the genomic 

similarity between each individual without phenotype (i) and those with 

phenotypes (j). 

Coming back to the toy data set, the predictions for yet-to-be observed 

records may be calculated as: 

ŷi = F̂m(xi ) = y+ vĥm(xi )
m=1

M

∑ . In this case, the weak learner is a RKHS 

regression as described above ( ). 

As before, 12.95]    20.50    18.41   16.13   21.08 [=y  was the vector of observed 

phenotypes for n=5 individuals. And the algorithm was initialized 

setting 81.170 =F  for all individuals. Again, assume that the loss function is 

the mean squared error, and the shrinkage coefficient v=0.9. 

The first model, m=1, is estimated as follows: 

The heuristic search begins by trying p=3 models in the form 

eKyy ++= ),;(10 shF s , with }3,2,1{ =∈ ps  

With )(⋅h  being the RKHS with sK  as kernel matrix. The model is 
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, where sK  is the kernel matrix corresponding to locus, and 

 is the vector of non parametric coefficients for model m=1. 

The solutions for each SNP would be: 

For s=1: with a mean squared error 

(MSE)=8.29; 

For s=2: with a mean squared error 

(MSE)=8.88; 

For s=3: with a mean squared error 

(MSE)=6.40; 

The SNP s=3 has produced the smallest MSE and was therefore selected in 

this case. The new estimates are F̂1 = y+ vĥ1(y, K 3) , with . 

The prediction for animal i now become: 

ŷi = y+ vki,⋅
3 α̂1; with v being the shrinkage coefficient, 

and }{ 3
,

3
, ⋅⋅ = ii kk  containing the vector 

with the genomic similarities between the individual i and each individual 

with record at locus 3. 

As for the OLS learner, the SNP minimizing the MSE in the same data set as 

the one used to estimate a and b was selected, but a tuning set may be used 

as stated previously.  

A second model m=2 is then added to the ensemble as: 

eXyy ++= ),;(ˆ
21 shF s ; with }3,2,1{ =∈ ps . The model may be written as 

eXyyr +=−= ),;(ˆ
211 shF s , and the dependent variable in the second model 

are the residuals obtained from m=1: 
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1r      = y  - (  + )  

The heuristic search begins again by trying p=3 models in the form  

, with }3,2,1{ =∈ ps  

The solutions for each SNP would be: 

For s=1: with a mean squared error 

(MSE)=5.93; 

For s=2: with a mean squared error 

(MSE)=6.34; 

For s=3: with a mean squared error 

(MSE)=6.25; 

The SNP s=1 is selected in m=2 because it was the one minimizing the MSE. 

The new estimates are ),(ˆˆˆ 1
212 KyFF hv+= , with . The 

prediction for animal i now become: 

ŷi = y+ vki,⋅
3 α̂1 + vki,⋅

1 α̂2 ; with and 

}{ 1
,

1
, ⋅⋅ = ii kk  containing the vector with the genomic similarities between the 

individual i and each individual with record at locus 1. 

As described previously, subsequent models are added to the residuals of the 

previous ensemble until a convergence criterion is reached. In this case, the 

algorithm converged at the second decimal in the MSE (=5.71) for M=7. The 
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SNP selected at each iteration were [3,1,3,1,1,3,1]. The predicted genomic 

merits of individuals in the toy data set were: 
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For generalization, it can be shown that the non-parametric genomic merit of 

any individual using RKHS as weak learner is 

, 

with being the non parametric coefficient estimates at model m, and 

}{ ,,
mm s

i
s
i k ⋅⋅ =k  the vector containing the genomic similarities between the 

individual i and each individual with record at the locus selected at model m. 

Hence, if the  are estimated at each model using the residuals of the 

previous model they will differ between models, whereas the K matrix 

remains constant. Hence, if the phenotype of a new individual has to be 

predicted, the non-parametric coefficient estimates and the pairs of the 

genomic similarity between it and the individuals with observation should be 

computed once and electronically stored. A single text file may be stored for 

each individual containing the genomic similarity at each marker position 

with each individual in the reference population. The algorithm does not 

need to be run again, and the predictive equations can be computed in a 

straightforward manner, as with linear regression models. 

Modification of the boosting algorithm 

Randomboosting. The purpose of this modification is basically to speed up 

the algorithm for large data sets or too time consuming learners. We propose 
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to sample mtry covariates at random out of the p SNPs at each iteration, and 

select the SNP among the mtry that minimizes the given loss function. 

Therefore, computation time may be reduced in the order of  

regarding the original algorithm, as only a small percentage of SNPs are 

tested for minimization of the loss function at each iteration. The parameter 

mtry may be tuned in the Random boosting modification. Studies of similar 

strategies used in the Random Forest algorithm showed that a value for mtry 

of 0.1*p may achieve satisfactory results (Goldstein et al., 2010). 

The boosting algorithm with this modification would flow as follows: 

(Initialization): Given data ),( Xy=Ψ , let the prediction of phenotypes be 

. 

Then, for m in {1 to M}, with M being large, proceed as: 

Step 1. Draw mtry out of p covariates from the original training set to 

construct a reduced training covariate matrix  Ψ(b) = (y,Xmtry) to train the 

algorithm in iteration m. 

Step 2. Calculate the loss function L yi ,Fm−1(xi ) + h(yi ;xi,mtrym)( )for all mtry 

SNPs and select that minimizing L yi ,Fm−1(xi ) + h(yi;xi ,mtrym)( )
i=1

n

∑  in the 

tuning set at iteration m, with h(yi;xi ,mtrym) being the prediction of the 

observation i in the tuning set using the learned parameters or coefficients of 

h(⋅) on the SNP mtrym. These parameters or coefficients are learned using 

the training set as in the original algorithm. Note that if the resulting tuning 

set is not large enough, it may be recommended to select the SNP 

minimizing the loss function in the training set, without leaving a set aside 

set. 
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Step 3. Updated predictions at iteration m in the 

form )( imF x = Fm−1(xi )+ v ⋅ h(yi;xi,mtrym) with v being some shrinkage factor, 

e.g. v=0.10. 

Step 4. Update the residuals to be used in the next iteration as yi = yi − Fm(xi ). 

Repeat steps 1 to 4 a large number of times (M). 

This modification causes that the order in which SNPs are selected in the 

algorithm change regarding the original boosting, as not all SNPs will be 

tested at each iteration. However, the boosting algorithm is considered as a 

small step gradient descent technique (Bühlmann, 2006), therefore, for a 

sufficient small v, it is expected that the impact of the order in which the 

covariates are used to reduce the residual estimates has small or null effect 

on the final predictions. Nonetheless, note that small data set might yield 

different results for smaller mtry and less number of iterations. 

CASE STUDY 

Data 

The algorithm and the proposed modification were implemented in a real 

data set composed by 1859 genotyped bulls. Full details on genotypes and 

the edition procedure can be found in Jiménez-Montero et al. (companion 

paper). After quality control 39,714 SNPs were kept in the analyses. Sires 

born before 2005 were used as a training sample (1601 and 1574individuals 

for production and type traits, respectively), whereas younger sires were 

used as a testing sample to evaluate predictive ability of the algorithm on yet 

to be observed phenotypes. De-regressed proofs (DRP) of four productive 

traits (milk yield (MY), fat yield (FY), and protein yield (PY) and fat 

percentage (FP)) and one type trait (udder depth (UD)) from January 2009 

routine evaluations were used as dependent variables. The DRPs were 
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obtained following  Jairath et al. (1998). Note that bulls in the testing set did 

not have progeny test proofs at that time. For convenience, the ordinary least 

square regression and the MSE were chosen as weak learner and loss 

function, respectively, as set up in the illustration example number one 

above. A 10-fold cross validation scenario was implemented in the training 

set. In each fold, 9/10 of the training data were used to calculate the 

regression coefficient estimates ( mâ and mb̂ ), and the remaining 1/10 records 

were used as a tuning set to choose the SNP minimizing the MSE. 

The respective DRP from the December 2011 routine evaluations were used 

to calculate the predictive ability of the predictions for sires in the testing set. 

Only sires with more than 20 effective daughter contribution were kept in 

the testing set (258 and 235 for production and type, respectively).The 

predictive accuracy was evaluated using Pearson correlation between 

predicted and observed (December 2011 DRP) response. The predicted bias 

was also calculated as , with n being the number of validation 

bulls. 

The random boosting was applied to this data using a grid of values for mtry 

(1%, 5%, 10% and 50%), and was compared to the original boosting 

(mtry=100%). Further, different values for the smoothing parameter were 

tested (v=0.01, 0.10, and 0.20). 

Results 

Tables 4.1 and 4.2 show the Pearson correlation and bias, respectively, 

between predicted and observed phenotype in the testing set, regarding the 

smoothing parameter v and mtry for each trait. In general, the predictive 

ability of the algorithm was very similar regardless mtry, with differences of 

1-2 points in Pearson correlation. Fat percentage showed better predictive 
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ability at larger mtry values. The known major genes (e.g. DGAT1), 

controlling this trait may partly explain this behavior, as sampling a small 

proportion of SNPs at each iteration may miss markers in these hot spots, 

hampering the predictive ability of the algorithm. Pearson correlation for 

v=0.10 and 0.20 were very similar, although v=0.10 showed equal or higher 

Pearson correlation than v=0.20 in all the analyses, excepting for UD with 

mtry equal to 5 and 10%.In terms of bias, the value of mtry did not show a 

clear trend, and differences were negligible. Convergence was slower for 

smaller values of v, because higher shrinkage is done on each coefficient 

estimate and a larger number of covariates are needed to explain the variance 

of the observed phenotypes. Nonetheless, the best combination of v and mtry 

was trait dependent. As a general recommendation, the random boosting 

algorithm may be used to speed up the calculus of genome- assisted 

evaluation without a relevant impact on the predicted ability, and in some 

cases with higher Pearson correlation between predicted and observed 

phenotypes in the testing set than using the original algorithm. Smaller 

values of mtry may be used without decreasing the predictive ability and 

with a significant reduction in the computation time. Nonetheless, mtry is 

genetic architecture dependent, and a large value is recommended to analyze 

traits with known major genes, as in the case of fat percentage. The choice of 

mtry and v is under discussion, and cross validation is currently the standard 

procedure. A more formal strategy with statistical properties could be 

studied in the future.    
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Table 4.1. Pearson correlation1 between predicted and observed responses in 
the testing set using the original gradient boosting algorithm (mtry=100%) or 
its modified version “Random Boosting”, for different values of percentage of 
SNPs sampled at each iteration (mtry) and smoothing parameter (v) 

    mtry(%) 
 v  1 5 10 50  100 

0.01  0.495 0.502 0.508  0.507  0.507 
0.10  0.487 0.500 0.503 0.508  0.503 

kg
 M

IL
K

 

0.20  0.483  0.503 0.503 0.501  0.504 

            
0.01  0.552 0.561 0.559 0.559  0.559 
0.10  0.567 0.565 0.569 0.556  0.556 

K
g 

FA
T 

0.20  0.551 0.554 0.562 0.550  0.551 

            
0.01  0.454 0.443 0.440 0.443  0.443 
0.10  0.466  0.441 0.445 0.444  0.444 

K
g 

PR
O

T 

0.20  0.465 0.437 0.429 0.434  0.428 

            
0.01  0.746 0.753 0.748  0.763  0.768 
0.10  0.741 0.746 0.748 0.761  0.765 %

FA
T 

0.20  0.728 0.737 0.740 0.753  0.767 

            
0.01  0.496 0.504 0.502 0.509  0.503 
0.10  0.496 0.502 0.507 0.505  0.505 U

D
D

ER
 

D
EP

TH
 

0.20   0.490  0.505  0.510  0.502   0.507 
 
1 Highest value for each trait is in bold. 
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Table 4.2. Estimated bias1 (measured as average difference between predicted 
and observed responses in standard deviation units) in the testing set using the 
original gradient boosting algorithm (mtry=100%) or its modified version 
“Random Boosting”, for different values of percentage of SNPs sampled at each 
iteration (mtry) and smoothing parameter (v) 

    mtry(%) 
 v  1  5  10  50  100 

0.01  -0.040 -0.047 -0.037  -0.039  -0.039 
0.10  -0.044 -0.042 -0.041 -0.035 -0.038 

kg
 M

IL
K

 

0.20  -0.032 -0.014 -0.008 -0.029 -0.026 

            
0.01  -0.113 -0.107 -0.104 -0.104 -0.104 
0.10  -0.121 -0.107 -0.090 -0.100 -0.099 

K
g 

FA
T 

0.20  -0.095 -0.114 -0.103 -0.092 -0.095 

            
0.01  -0.049 -0.061 -0.071 -0.067 -0.070 
0.10  -0.029 0.062 -0.046 -0.047 -0.058 

K
g 

PR
O

T 

0.20  -0.025 -0.034 -0.056 -0.068 -0.075 

            
0.01  0.039 0.051 0.053  0.046 0.045 
0.10  0.030 0.053 0.053 0.042 0.040 %

FA
T 

0.20  0.032 0.048 0.055 0.010  0.041 

            
0.01  -0.234 -0.233 -0.232 -0.219 -0.238 
0.10  -0.217 -0.226 -0.232 -0.233 -0.231 U

D
D

ER
D

EP
TH

0.20   -0.219  -0.220  -0.229  -0.241  -0.234 
1 Lowest value for each trait is in bold. 

 

The original gradient boosting algorithm performed the complete genome-

assisted evaluation (10-folds) in 171.67 hours with v=0.01, 69.17 hours with 

v=0.10 and 50 hours with v=0.20 (Table 4.3). The computation time was 

substantially reduced using the modification of the algorithm with mtry 

=0.01. The smaller times were 1.5, 0.83 and 0.67 hours for mtry=0.01 and 

v=0.01, v=0.10 and v=0.20, respectively. These computing times make 

Random boosting feasible for running frequent routine genome-assisted 

evaluations with large data sets without impairing the predictive accuracy. 
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Note that the parallelization of the code can be implemented at step 2 

described above, when searching for the SNP minimizing the loss function. 

The parallelization would drastically decrease the computation time of the 

algorithm (not implemented in this study). 

Table 4.3. Computation time1 (in hours) to run 10-fold cross validations (a 
complete genomic assisted evaluation cycle) regarding the value of the 
smoothing parameter (v) and the proportion of SNPs sampled at each iteration 
(mtry) 

 mtry Smoothing 
parameter 

(v) 
 1%  5%  10%  50%  100%2 

v=0.01  1.50  8.33  16.33  86.33  171.67 
v=0.10  0.83  3.34  6.67  35.00  69.17 
v=0.20  0.67  2.83  5.33  25.00  50.00 
1In an Intel Xeon QuadCore E5430 (4x2.66Ghz) proccesor with 8Gb RAM memory under Linux 
operating system. 
2This value of mtry is equivalent to the original gradient boosting. 

Concluding remarks 

Incorporating high-density markers into models for prediction of 

genetic values poses important statistical and computational challenges. 

Machine learning algorithms can be used to deal with the curse of 

dimensionality and computational limitations when a large number of 

individuals have genotypic information. In particular, the boosting algorithm 

provides an efficient strategy to calculate additive genomic breeding values 

using high density SNP information. We have provided here a 

comprehensive description of the mechanisms of the algorithm and showed 

that it can be viewed as an additive gradient descent method that may be 

implemented as a SNP regression model. A modification of the algorithm 

has been also proposed to speed up computation of genomic breeding values, 

with a minimum impact in the predictive ability. The companion study by 

Jiménez-Montero et al. (Companion paper) provides comparison of boosting 

and random boosting with other methods commonly used in the genome-

assisted evaluations. 
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Imputation of genotypes from lower to higher density platforms is an 

essential tool to optimize genomic selection programs. Imputation from 3K 

and 6K assays to 50K density and later to HD is performed with the aim to 

compare predictive ability and selection efficiency of imputed genotypes. 

This study considers the performance of these sets of data in terms of their 

efficiency when used for selection of top animals in a dairy cattle population. 
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Abstract 

The aim of this study was to evaluate different density genotyping platforms 

for genotype imputation and genomic prediction. Genotypes from 

customized Golden Gate Bovine3K BeadChip (LD3K) and BovineLD 

BeadChip (LD6K) platforms were imputed to BovineSNP50v2 BeadChip 

(50K density). In addition, LD3K, LD6K and 50K genotypes were imputed 

to a BovineHD BeadChip (HD) 800K platform, and with predictive ability 

evaluated and compared subsequently. Comparisons of prediction accuracy 

were carried out using Random Boosting (R-Boost) and Genomic BLUP (G-

BLUP). Four traits under selection in the Spanish Holstein population were 

used: milk yield (MY), fat percentage (FP), somatic cell count (SCC), and 

days open (DO). Training sets at 50K density for imputation and prediction 

included 1632 genotypes. Testing sets for imputation from LD to 50K 

contained 834 genotypes while testing sets for genomic evaluation included 

383 bulls. The reference population genotyped at HD included 192 bulls. 

Imputation using Beagle software was effective for reconstruction of dense 

50K and HD genotypes, even when a small reference population was used, 

with 98.3% of SNP correctly imputed. 

R-Boost outperformed G-BLUP in terms of prediction reliability, mean 

squared error and selection effectiveness of top animals in the case of FP. 

For other traits however, there were no clear differences between methods. 

No differences were found between imputed LD and 50K genotypes, 

whereas evaluation of genotypes imputed to HD was on average 4% more 

accurate than 50K prediction, and showed smaller (2%) mean squared error 

of predictions. Similar bias in regression coefficients was found across data 

sets but, regressions were 0.32 units closer to unity for DO when genotypes 

were imputed to HD density.  
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Regarding selection effectiveness of top animals, more (2%) top bulls were 

classified correctly with imputed LD6K genotypes than with LD3K. When 

the original 50K genotypes were used, correct classification of top bulls 

increased by 1%, and when those genotypes were imputed to HD 3% more 

top bulls were detected. Selection effectiveness could be slightly enhanced 

for certain traits such as FP, SCC or DO when genotypes are imputed to HD.  
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Introduction 

Genomic selection (GS) in dairy cattle started in 2006 (De Roos et al., 

2009), when high-density single nucleotide polymorphism (SNP) panels 

became affordable for application to livestock and plants (Van Tassell et al., 

2008). The first official direct genomic values (DGV) were provided to dairy 

farmers in January 2009 (Wiggans et al., 2009). Despite the improvement in 

reliability of young selection candidates achieved with genome enabled 

evaluations (Wiggans et al., 2011), the commercial price of high density 

SNP chips may limit their use to males and elite females in many 

populations.  

A next key objective in GS programs is to optimize the use of genomic 

information (Pryce and Daetwyler, 2012). Use of low density SNP panels 

with subsequent imputation is a promising form of reducing genotyping 

costs; this is because use of these low density genotyping platforms could 

greatly increase the number of genotyped animals in commercial dairy herds. 

The optimal size of such panels depends on population characteristics, such 

as extent of linkage disequilibrium, genetic architecture of traits under 

selection, number and proportion of animals with high-density SNP 

genotypes, and genetic relatedness between these animals and future 

candidates (Weigel et al., 2010a). Imputation methods work by combining 

data from a reference panel of individuals genotyped at a dense set of 

polymorphic sites (usually SNPs) with data from a study sample collected 

from a genetically similar population but genotyped at a subset of these sites 

(Howie et al., 2009). There is a need to integrate different density SNP 

panels in genome-based breeding programs. For accurate imputation of 

missing SNPs, the reference population must include a sufficient number of 

individuals representative of each SNP allele of the whole population (Hao 

et al., 2009). Imputation accuracy is also related to the degree of relationship 

between the reference population and the animals to be imputed (Meuwissen 
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and Goddard, 2010). Theoretically, heavily represented bulls in the 

population, or animals from the most common matings (sire x daughter of a 

frequently use sire) are optimum animals to be genotyped as reference 

population. High density genotypes (50K) can be imputed from a low 

density (2-4K) genotypes with an accuracy above 90% (Weigel et al., 

2010b).  

Currently in cattle, the most commonly used chip is the BovineSNP50.v2 

Beadchip (Illumina Inc., San Diego, CA) and imputation strategies are 

focused on imputation from 6K to 50K. The availability of the 800K SNP 

BovineHD BeadChip (Illumina Inc.) opens the chance of imputation from 

50K to this higher density panel. Genotyping a large reference population at 

extra large high density would be cost prohibitive. However, genotyping a 

subset of this reference population, and then imputing the rest of the 

genotypes may be an efficient strategy if the predictive ability of subsequent 

genomic evaluations exceeds that obtained before imputation. In addition, 

imputed SNPs from low density 3K and 6K platforms to high density must 

be assessed in terms of predictive ability.  

Several methods have been developed for imputation, and software is 

publicly available for these methods, (Howie et al., 2009; Kong et al., 2008; 

Scheet and Stephens, 2006). Beagle (Browning and Browning, 2009) has 

become one of the preferred options for imputation of large data sets 

(Boichard et al., 2012; Erbe et al., 2012).  This software uses a hidden 

Markov model to infer haplotype phase with both typed and un-typed SNPs. 

Their competitive imputation accuracy and computational advantages when 

compared with other methods have been widely reported (Calus et al., 2011; 

Nothnagel et al., 2009; Segelke et al., 2012; Sun et al., 2012).  

After imputation, it is possible to estimate DGV with similar accuracy to that 

obtained from high density genotyping (Berry and Kearney, 2011). Accuracy 
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of DGV for selection candidates can be increased by imputation compared 

with estimation based on low density SNPs. Recent studies have shown that 

low density genotypes from animals with enough phenotypic information 

can be added to the reference population after imputation to increase the 

overall accuracy of estimation (Weigel et al., 2010a). 

The objective of this study was to compare imputation accuracy, predictive 

ability, and selection effectiveness for selection candidates genotyped at 

different densities using the Random Boosting (R-Boost) and G-BLUP 

methods.    

Material and methods 

Genotypes and Phenotypes  

A total of 2658 genotyped bulls were used in this study, using the 

BovineSNP50.v2 Beadchip for 2226 bulls and the BovineSNP50.v1 

Beadchip (Illumina Inc.) for 240 bulls. These 2658 bulls build up the 50K 

Holstein Spanish population that will be referred to as the 50K population 

subsequently. Additionally 192 bulls were genotyped using the 

800K BovineHD BeadChip and will subsequently be referred as HD 

population. These two sets have been contributed to the Eurogenomics 

population. 

Before carrying out genome-based sire evaluations, SNPs with greater than 

5% incidence of missing genotypes across individuals, and SNPs with minor 

allele frequency (MAF) less than 5% were discarded, leaving 39,714 and 

540,501 SNPs for the 50K and HD evaluations, respectively. Animals with 

call rates lower than 90% were also excluded in the evaluation process. 

Four complex traits of economic interest were examined, including milk 

yield (MY), fat percentage (FP), somatic cell count (SCC), and days open 
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(DO). These traits represent different heritabilities, genetic architectures and 

amount of phenotypic information available. 

Deregressed MACE progeny proofs (DRP) from the January 2009 Interbull 

evaluation (Uppsala, Sweden) calculated as described by Jairath et al. 

(1998), and genotypes from progeny tested bulls in the training sets were 

used to estimate marker effects. Bulls in the testing sets had DGV in 

December 2011 based on 20 or more effective daughter contributions (EDC) 

each.  

Imputation from LD to 50K 

The design of reference and testing sets for imputation process and genomic 

evaluation is outlined in Figure 1. The design of training and testing sets 

followed recommendations from Mäntysaari et al. (2010), but their 

recommended four year gap between training and testing sets was reduced to 

three years due to the small size of the reference population, thereby leaving 

more bulls in the training set to enhance the accuracy of estimated DGV. 

Training and testing data sets were generated from individuals genotyped 

with the 50K chip based on year of birth. A total of 1632 bulls born before 

2006 with progeny test results in January 2009 were used as training set for 

imputation and for genome-based evaluation of production traits (MY and 

FP). Then, 1629 and 1412 bulls were used as training populations for SCC 

and DO respectively. Bulls born between 2006 and 2010 were used as 

testing set, resulting in 834 genotypes to be imputed, which 382 were 

progeny tested bulls in December 2011. These sires were used as the testing 

set for MY and FP genomic predictions, whereas only 380 and 216 had 

enough EDC for SCC and DO, respectively.  

Low density genotypes were created in silico in the testing set for its 

posterior assessment of imputation accuracy. For this purpose, SNPs from 
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the 50K assay that were not included in the GoldenGate Bovine 3K (LD3K) 

(Illumina Inc.) or the Bovine LD (LD6K) (Illumina Inc.) assays, were 

masked. Thereafter, phased haplotypes from the reference population 

(TRAIN50K) filled in by BEAGLE were used as reference for imputation of 

the LD3K and LD6K validation sets, as well as for the imputation of missing 

SNPs in the original 50K set. The outcomes were referred as 3K50K, 6K50K 

and TEST50K data sets. 

TEST 50K
834 bulls born >2006 

REFERENCE
1632 bulls born <2006 

MASKING

TEST 
50K > 3K

TEST 
50K> 6K

IMPUTING BEAGLE (3/6 K > 50K)

IMPUTATION 
ACCURACY 

3K > 50K
6K > 50K

TEST 3K50K TEST 6K50 TEST 50K 

50K POPULATION
2466 bulls

BovineSNP50.v1 & v2 

 

Figure 5.1. Diagram of the design of reference and validation sets and process 
of imputation accuracy evaluation from 3K and 6K to 50K. 
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Imputation from 50K to HD 

The final process involved imputation of the 3K50K, 6K50K, TEST50K and 

TRAIN50K set (3KHD, 6KHD, 50KHD and TRAIN50KHD) respectively to 

HD, using the original HD population as training set. Imputation to high 

density was performed in two steps for the 3KLD and 6KLD sets, as 

recommended in VanRaden et al. (2013). 

Accuracy of imputation 

The accuracy of the imputation process was measured using the allele error 

rate (AER). The errors were counted as 0 when the imputed and actual 

marker genotypes were identical, 1 if the actual marker type was 

homozygous and the imputed genotype was heterozygous (or vice versa), 

and 2 if the actual and imputed marker types were homozygotes for distinct 

alleles. Markers/animals where the observed genotype was not missing in the 

original non-imputed data set were considered. The AER was calculated as 

100 times the total number of errors divided by twice the number of imputed 

loci. This gave the rate of falsely predicted alleles, which is an appropriate 

measure when using an additive prediction model, as in this study.  

Genome-Enabled Evaluation Models 

It should be noted that the original HD population was used only for 

imputation purposes, and genome-based evaluation comparisons were 

carried out using the original 50K data set. Two different evaluation models 

were used: 

R-Boost. The Random Boosting algorithm (González-Recio et al., 2013) is a 

machine learning technique that combines different predictors and a 

shrinkage factor (Friedman, 2000). Boosting adds basis functions iteratively, 

such that each addition further reduces the selected loss function (Hastie et 

al., 2005). Ordinary least squares estimation with genotypes as basis function 
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was successively applied on the residuals of a previous iteration in the 

reference population. The MSE of prediction in a tuning set was used as the 

loss function to be minimized. The marker effect shrinkage parameter v of 

the algorithm was fixed to 0.10, while the parameter mtry that sets the 

percentage of markers sampled per iteration was fixed to 0.05 as suggested 

by González-Recio et al. (2013). 

G-BLUP. The G-BLUP method is similar to standard BLUP evaluations 

with the pedigree relationship matrix replaced with a genomic relationship 

matrix (G) built from molecular information. Pairs of individuals sharing the 

same genotype for a large number of markers will be more similar 

genomically, and will have larger values in the corresponding off diagonal 

cells of the matrix, as is the case for pairs of related animals in a pedigree-

based relationship matrix. The genomic relationship matrix was computed 

as

' ,
2 (1 )i i

ZZG
p p

=
−∑  following VanRaden (2008), where p is the minor 

allele frequency of locus i; Z is a matrix that results from subtracting P from 

M, with Pj = 2(Pj -0.5) and M is the matrix of genotypes coded as -1, 0 and 1 

for the homozygote, heterozygote and other homozygote, respectively. 

Criteria for Comparisons 

Reliability, Empirical Bias in Regression Coefficients and MSE. The 

prediction accuracy of evaluations was computed as weighted 

Pearson’s correlation between the predicted DGVs in the testing set 

and the December 2011 DRPs. Regression coefficients of the realized 

DRPs on the estimated DGVs were also calculated, because this 

parameter is commonly used as a measure of “prediction bias” in 

genome-assisted evaluations (Mäntysaari et al., 2010). Finally, the 

MSE of predictions was also estimated.  
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Means and confidence intervals were estimated using bootstrapped 

samples in each evaluation output (Efron, 1986). Pairs were the 

predicted phenotype in the testing set and its corresponding observed 

(known) phenotype. Then, 1000 samples were drawn with 

replacement from the whole testing set, and predictive correlation 

estimates, regression coefficients and MSE correlation were computed 

for each of the bootstrap samples. The MSE is preferable as criterion 

when animals with different amount of information are compared 

(Vitezica et al., 2011).  Finally the confidence interval was considered 

as the narrowest interval containing 95% of the replicates. 

Selection Effectiveness. This was measured as αtop / αsel, where αsel 

represents a given percentage of bulls ranked by their predicted DGVs 

and αtop represents the percentage of bulls selected by the model that 

were in the same percentile according to their realized DPR. This 

measure can be interpreted as the fraction of young bulls as ranked by 

DGV that actually included at least one truly top bull, or similarly, as 

the fraction of truly top bulls that was included in a given set of top 

young bulls as predicted by DGV.   

Selection effectiveness can also be measured using confusion 

matrices. These matrices are commonly used in classification 

problems (Edler et al., 2001), and are built by comparing predictions 

with realizations in a validation dataset. In this study, predictions and 

observations across traits and methods were split into five disjoint 

classes according to their observed DRP and predicted DGV rankings. 

Therefore each class included 20% of bulls in the testing set. 

Observations were classified in rows and predictions in columns. 
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Correct predictions fall on the diagonals ( )iia , and misclassifications 

on the off-diagonal ( , )ija i j≠  of the confusion matrix. Elements 

above the diagonal represent bulls that were under-evaluated by the 

genomic method while outcomes below the diagonal represent bulls 

that were over-evaluated. Confusion matrices allow computation of 

overall selection effectiveness (E) as the proportion of correctly 

classified observations for a given C matrix: 1 1

1 1

, ( )n m
iji j

n m
iji j

c i j
E

c
= =

= =

=
=
∑ ∑
∑ ∑

, 

where iic are the elements on the diagonal. Dairy cattle breeding 

programs may be interested on the effectiveness of top bulls selection; 

this can be computed from the confusion tables as the proportion of 

correctly classified bulls in the first class: 11

11

top n
ii

cE
c

=

=
∑ ∑

. 

Similarly, effectiveness of selection was also computed for the top 

60% bulls to provide a measure at low selection intensity scenarios: 
3 3

1 1
60% 3

1 1

iji j
n

iji j

c
E

c
= =

= =

=
∑ ∑
∑ ∑

. 

Results and discussion 

Imputation Performance 

Imputation performances from customized LD3K and LD6K to 50K 

density resulted in an AER of 3.1% and 1.3%, respectively. These 

results agree with previous studies using similar population sizes 

(Berry and Kearney, 2011; Dassonneville et al., 2012; Zhang and 
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Druet, 2010). Based on these results, use of the LD6K array should be 

an important improvement. 

 It must be noted that, our results may be slightly over optimistic, 

because LD genotypes are masked instead of directly genotyped, 

especially in the case of 3KLD due to the different chemistries used 

(Dassonneville et al., 2012). Regarding imputation from 50K to HD, a 

small number of HD genotypes could be enough for accurate 

imputation in some populations (Schrooten et al., GSE submitted), 

despite the fact that this accuracy can be enhanced when more HD 

genotypes are included within the range of genotypes used in this 

study. In a previous pilot study, AER(x100) after imputation from 

50K to HD was 0.9% when for our set of data. 

Validation of genomic evaluations 

Reliability. Table 1 shows the results for predictive reliability obtained 

with the two methods considered. Both methods resulted in similar 

accuracy; R-Boost was the preferred method for FP, whereas G-BLUP 

was for MY and DO. No clear advantages for a particular method 

were observed for SCC. 

Regarding SNP density, the imputation of low density genotypes to a 50K 

panel resulted in accuracies in the range to these observed for the original 

50K genotypes, mainly for the LD6K case, in agreement with results 

reported previously by Segelke et al. (2012). Predictive reliability from 6K 

to 50K was 2% higher, averaged across traits, than from 3K. In practice, this 

difference is expected to be larger since the LD3K assay was developed 

using a different technology than the 6K and 50K assays (Dassonneville et 

al., 2012). For traits related to fertility, imputed genotypes were competitive 
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compared with the 50K data set. Erbe et al. (2012) reported higher 

accuracies for genotypes imputed to HD than for the true high density 

genotypes for fertility traits, although they did not show statistical 

differences between them. 

Table 5.1. Reliability of predictions of G-BLUP and R-Boost for four traits 
after imputation from 3K, 6K and 50K to 50K and HD. Mean of the 1000 
Bootstrap replicates and confidence intervals (C.I.) constructed as the 
narrowest gap containing 95% of the replicates are shown 

Trait Method 3K50K 6K50K TEST50K 3KHD 6KHD 50KHD 

G-BLUP 0.59 0.59 0.59 0.54 0.54 0.55 

C. I. 0.53 0.66 0.51 0.65 0.52 0.66 0.47 0.61 0.47 0.61 0.47 0.62 

R-Boost 0.53 0.55 0.57 0.52 0.54 0.54 

Milk Yield  

(MY) 

C. I. 0.45 0.60 0.47 0.62 0.50 0.64 0.44 0.59 0.46 0.61 0.47 0.62 

G-BLUP 0.59 0.60 0.60 0.54 0.55 0.55 

C. I. 0.53 0.65 0.53 0.67 0.54 0.67 0.46 0.61 0.47 0.62 0.48 0.63 

R-Boost 0.73 0.78 0.78 0.74 0.79 0.80 

Fat Percentage

(FP) 

C. I. 0.67 0.78 0.74 0.82 0.74 0.82 0.67 0.79 0.75 0.83 0.75 0.84 

G-BLUP 0.49 0.49 0.48 0.44 0.50 0.47 

C. I. 0.40 0.58 0.40 0.58 0.39 0.57 0.34 0.54 0.41 0.59 0.38 0.56 

R-Boost 0.46 0.45 0.46 0.46 0.50 0.49 

Somatic Cell 

Count (SCC) 

C. I. 0.37 0.55 0.36 0.55 0.36 0.54 0.36 0.55 0.41 0.58 0.40 0.58 

G-BLUP 0.25 0.29 0.19 0.29 0.32 0.31 

C. I. 0.10 0.40 0.14 0.43 0.02 0.33 0.14 0.44 0.18 0.46 0.18 0.46 

R-Boost 0.20 0.19 0.22 0.25 0.20 0.28 

Days Open 

(DO) 

C. I. 0.04 0.36 0.02 0.33 0.08 0.38 0.10 0.39 0.05 0.37 0.12 0.43 
In bold: The preferred method within trait and set criteria 
 

Lower reliability for MY using genotypes imputed to HD was found 

regarding the original 50K genotypes. However, modest improvements 

occurred for FP, SCC and DO. Similar performance was found between data 

sets imputed from LD to HD. This result was in accordance with those 

previously reported in other Holstein populations, where HD estimates were 

only slightly better than those from 50K genotypes (Erbe et al., 2012; 
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VanRaden et al., 2013). In a recent study, Jensen et al. (2012) concluded that 

92% of all additive genetic variance could be explained using 44K SNP 

markers, and that further increases in marker density will have limited 

effects on the predictive accuracy, unless better methods are used to 

distinguishing between markers with real effects and markers with no effect. 

Confidence intervals estimated by bootstrapping showed that distributions of 

prediction reliability widely overlapped across methods and sets for MY and 

SCC. However, R-Boost estimates were more accurate than G-BLUP for FP. 

As expected, large CIs were found for DO, probably due to the reference 

population size and the amount of information for each bull.  

Empirical Bias of Regression Coefficients The estimated “b” values of 

the regression of realized DRP on estimated DGV for the traits, methods, 

and genotyped sets considered are shown in Table 2. Estimated regression 

coefficients were close to unity for MY, SCC and DO using R-Boost, while 

G-BLUP showed values closer to unity for FP. These values were within the 

range of previously reported values for other populations (Olson et al., 

2011). 

No relevant differences were found between 3KLD and 6KLD in terms of 

the “b” values. In general, data sets using HD genotypes resulted in similar 

departures from unity as the evaluations using 50K genotypes. However, for 

DO the imputation to HD led to more favorable “b” values but still far from 

the unity when G-BLUP was used. Su et al. (2012) also reported slightly 

better performance at HD density for fertility traits regarding bias in the 

regression coefficient. Values of the coefficient for this case should increase 

if new animals are included in the reference population and their DRP are 

based on larger EDC. Confidence intervals from R-Boost included the unity 

for MY in the 50K data set, and all data sets for SCC and DO, the latter as a 
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result of a large uncertainty. However, for G-BLUP only estimates for FP 

included unity. 

Table 5.2. Regression coefficients from G-BLUP and R-Boost for four traits 
after imputation from 3K, 6K and 50K to 50K and HD. Mean of the 1000 
Bootstrap replicates and confidence intervals (C.I.) constructed as the 
narrowest gap containing 95% of the replicates are shown 

Trait Method 3K50K 6K50K TEST50K 3KHD 6KHD 50KHD 

G-BLUP 0.74 0.72 0.72 0.68 0.67 0.67 
C. I. 0.63 0.84 0.61 0.82 0.62 0.83 0.57 0.79 0.56 0.76 0.58 0.79 
R-Boost 0.86 0.88 0.90 0.84 0.85 0.85 

Milk Yield  

(MY) 

C. I. 0.72 1.01 0.75 1.03 0.77 1.05 0.71 0.99 0.69 0.97 0.70 0.98 
G-BLUP 1.08 1.02 1.01 0.93 0.94 0.93 
C. I. 0.94 1.23 0.88 1.15 0.87 1.14 0.78 1.08 0.80 1.11 0.78 1.08 
R-Boost 1.17 1.29 1.30 1.13 1.24 1.25 

Fat Percentage 

(FP) 

C. I. 1.05 1.28 1.19 1.40 1.20 1.41 1.01 1.22 1.15 1.34 1.15 1.36 
G-BLUP 0.59 0.60 0.58 0.62 0.61 0.67 
C. I. 0.48 0.73 0.47 0.72 0.45 0.69 0.47 0.78 0.49 0.74 0.51 0.81 
R-Boost 1.03 0.98 1.00 1.03 1.06 1.03 

Somatic Cell 

Count (SCC) 

C. I. 0.79 1.27 0.76 1.23 0.77 1.22 0.79 1.29 0.83 1.26 0.82 1.25 
G-BLUP 0.39 0.45 0.25 0.47 0.51 0.51 
C. I. 0.14 0.64 0.21 0.70 0.03 0.45 0.21 0.70 0.28 0.78 0.26 0.75 
R-Boost 0.74 0.64 0.99 0.85 0.58 0.91 

Days Open 

(DO) 

C. I. 0.15 1.43 0.10 1.14 0.31 1.70 0.30 1.33 0.14 1.06 0.35 1.44 
In bold: The preferred method within trait and set criteria 
 

Mean Squared Error. The MSE of predictions showed differences 

between evaluation methods (Table 3). R-Boost had smaller MSE for 

the four traits although CIs overlapped for all traits except for FP, 

where R-Boost showed significantly smaller MSE. In general, MSE 

estimates from R-Boost predictions were 12%, 54%, 12%, and 5% 

smaller than those from G-BLUP for MY, FP, SCC, and DO, 

respectively. These results and the aforementioned reliabilities and 

regression coefficients are in agreement with those reported by 
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Jiménez-Montero et al. (2013) who compared different methods using 

a similar population and different traits. 

Table 5.3. Mean Squared Errors for G-BLUP and R-Boost for four traits after 
imputation from 3K, 6K and 50K to 50K and HD. Mean of the 1000 Bootstrap 
replicates and confidence intervals (C.I.) constructed as the narrowest gap 
containing 95% of the replicates are shown 

 

Trait Method 3K50K 6K50K TEST50K 3KHD 6KHD 50KHD 

G-BLUP 256 255 258 277 276 278 
C. I. 217 291 220 296 222 299 237 317 240 317 238 315 
R-Boost 244 236 229 247 241 240 

Milk 

Yield  

(MY)1 
C. I. 206 280 201 274 198 266 212 284 206 278 205 281 
G-BLUP 0.044 0.044 0.044 0.048 0.048 0.047 

C. I. 0.03
8 

0.05
1 

0.03
8 

0.05
0 

0.03
9 

0.05
1 

0.04
2 

0.05
5 

0.04
1 

0.05
4 

0.04
1 

0.05
4 

R-Boost 0.034 0.030 0.030 0.032 0.028 0.027 

Fat 

Percentag

e 

(FP) C. I. 0.02
8 

0.03
9 

0.02
6 

0.03
4 

0.02
6 

0.03
5 

0.02
6 

0.03
8 

0.02
4 

0.03
2 

0.02
3 

0.03
2 

G-BLUP 157.8 155.1 154.5 149.2 152.0 143.3 

C. I. 134.
5 

178.
9 

130.
2 

175.
7 

132.
3 

177.
4 

126.
7 

171.
3 

129.
1 

172.
2 

122.
9 

164.
5 

R-Boost 136.6 138.3 137.4 137.1 131.7 133.4 

Somatic 

Cell 

Count 
(SCC) C. I. 117.

5 
157.

7 
118.

8 
160.

5 
115.

4 
158.

0 
117.

8 
156.

4 
115.

0 
153.

6 
114.

2 
154.

5 
G-BLUP 562.6 548.6 636.3 537.5 530.2 535.1 

C. I. 460.
1 

673.
3 

446.
4 

656.
1 

518.
8 

758.
7 

433.
5 

642.
0 

437.
5 

638.
8 

440.
1 

644.
1 

R-Boost 531.7 541.9 523.4 519.4 546.4 519.6 

Days 

Open 

(DO) 
C. I. 429.

6 
638.

2 
441.

1 
641.

5 
429.

5 
634.

7 
405.

7 
618.

7 
426.

5 
650.

9 
415.

7 
619.

2 
In bold: The preferred method within trait and set criteria 
1Values x 1000 

The 6KLD set showed smaller MSE than 3KLD for MY and FP after 

imputation, but no clear differences were found for SCC and DO. 

Slightly smaller MSE was observed for the 50KHD set regardless the 

trait and method, except for MY, and the improvement averaged only 

1 % across traits. The 50KHD set also out-performed LD sets after 

imputation to HD. Imputation from 50K to HD resulted in 1% and 3 
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% smaller MSE averaged across traits and methods regarding 

imputation from 6K and 3K, respectively.  

Bootstrap confidence intervals from G-BLUP and R-Boost overlapped 

for MY, SCC and DO, showing similar levels of uncertainty. R-Boost 

showed clear smaller MSE for FP as reported above for reliability and 

regression slopes, estimations with 50K sets were preferred over HD 

for MY. Nevertheless, MSE from predictions using HD genotypes 

was smaller for FP, SCC and DO, but no clear differences were 

obtained and the bootstrapped confidence intervals overlapped. 

Selection Effectiveness. Both R-Boost and G-BLUP performed in a 

similar manner at selecting top ranked bulls regarding their observed 

DRP (Online appendix I). Differences were observed only for FP in 

favor of R-Boost (Figure 2). Selection accuracy of top bulls was 

slightly higher with HD genotypes, as an example, 57 % instead of 

50% of bulls ranked in the percentile 90 regarding observed DRPs 

were also ranked in percentile 90 regarding DGV. A large percentage 

of actual top bulls for MY, FP and DO were ranked on top when R-

Boost was the evaluation method and HD genotypes were used. For 

other cases, 50K and HD resulted in similar patterns. The R-Boost 

showed better selection effectiveness than G-BLUP using HD 

genotypes, probably because R-Boost is based on estimation of 

individual SNP effects instead of average genomic similarity between 

pairs of individuals. 
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Figure 5.2. Percentage of common bulls in the observed and predicted rankings 
when less or equals than top 10% of genomically evaluated bulls are selected 
regarding fat percentage. Comparison between 50K (―) and HD (×) genotypes. 

Another way to measure selection efficiency is through confusion tables. 

Bulls in the testing sets were classified according to observed DRPs and 

predicted DGV rankings (Online appendix II). As an example, the 6K50K 

and 50KHD cases are shown in table 4. An equal or larger number of 

animals in each percentile were correctly classified regarding observed 

DRPs using imputation from 50K to HD than imputation from 6K to 50K. 

Averaged across methods, 3 out of 382, 8.5 out of 382, 0.5 out of 380, and 

3.5 out of 216 more animals were classified in the same percentile for MY, 

FP, SCC, and DO respectively. For all cases, genomic evaluation methods 

classified correctly more animals in the two extreme classes than in the three 

intermediate.  
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Table 5.4. Confusion matrices for classification of bulls into five classes 
according to their ranking regarding observed DRPs for four traits and the 
evaluation methods1 used after imputation from 6K to 50K and from 50K to 
HD. Observed and predicted classes in rows and columns respectively. Results 
are absolute values.  

 

 6K50K  50KHD 
Milk Yield (MY) 

G-BLUP 34 23 14 3 3  31 24 15 3 4 
17 26 14 9 10  17 23 14 12 10 
15 15 19 21 6  16 16 17 18 9 
10 8 17 21 20  12 9 15 25 15 
1 4 12 22 38  1 4 15 18 39 

R-Boost1
33 23 10 8 3  33 23 9 9 3 
20 19 20 9 8  17 24 16 10 9 
10 20 20 14 12  15 15 21 17 8 
9 10 17 18 22  7 9 20 18 22 
5 4 9 27 32  5 5 10 22 35 

Fat Percentage (FP) 
G-BLUP 37 19 12 7 2  38 17 10 9 3 

18 24 15 15 4  16 21 21 12 6 
11 16 20 14 15  13 14 23 12 14 
9 11 17 17 22  6 18 11 23 18 
2 6 12 23 34  4 6 11 20 36 

R-Boost1
44 21 9 3 0  46 18 13 0 0 
23 22 20 10 1  17 27 22 7 3 
9 21 21 16 9  11 21 18 22 4 
1 10 19 29 17  3 8 16 31 18 
0 2 7 18 50  0 2 7 16 52 

Somatic Cell Conunt (SCC) 
G-BLUP 31 24 5 12 4  42 7 10 10 7 

19 17 12 16 12  13 21 15 17 10 
14 21 19 14 8  10 20 16 16 14 
9 9 20 18 20  7 20 14 17 18 
3 5 20 16 32  4 8 21 16 27 

R-Boost1
31 18 13 11 3  32 21 11 8 4 
15 23 16 11 11  15 22 17 14 8 
12 13 22 20 9  13 13 23 12 15 
14 12 13 17 20  13 9 17 16 21 
4 10 12 17 33  3 11 8 26 28 
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Days Open (DO) 
G-BLUP 12 15 7 5 4  12 16 5 5 5 

11 5 9 11 7  9 6 10 11 7 
7 14 9 3 10  11 9 9 7 7 
7 4 10 9 13  7 6 9 9 12 
6 5 8 15 10  4 6 11 10 13 

R-Boost1
13 7 12 9 2  13 13 7 4 6 
6 13 7 9 8  7 13 7 7 9 
9 10 7 6 11  9 9 8 10 7 
8 5 6 12 12  8 4 8 13 10 
7 8 11 7 11  6 4 13 9 12 

In bold: Preferred method within trait and set criterion for selection of bulls in the first class (Ranked in 
the top 20% according their DRPs) 
1Method: G-BLUP (Genomic BLUP); R-Boost (Random Boosting) 
 
Results from confusion matrices are also shown in Table 5 as rates, 

including overall rate of correctly classified animals, rate of correctly 

classified in the first class (Top 20%), and rate of correctly classified within 

the top three classes (Top 60%). Small differences were found between data 

sets and methods. Averaged across sets R-Boost classified correctly more 

animals in the first class (Top 20%) when MY (43.5% vs 42.8%) and FP 

(56.3% vs 48.8%) were considered. However G-BLUP outperformed R-

Boost for SCC (44.8% vs 40.3%) and DO (29.6% vs 27.3%). Also, for three 

out of four traits FP (53.5% vs 51.6%), SCC (44.5% vs 40.6%) and DO 

(26.2% vs 27.8%), HD estimates correctly classified more animals as 

belonging to the top class than predictions based on 50K genotypes. The rate 

of animals correctly classified using HD genotypes ranged between 0.21 for 

DO to 0.46 for FP, and it was only poorer for MY (41.6% vs 44.6%). On 

average 32% of animals were correctly classified regarding their observed 

DRPs across traits, sets and methods. It must be noted that 20%, 20%, and 

60% of animals will be correctly classified if selected at random regarding 

Overall, Top 20% and Top 60% criteria. From this point of view genomic 

selection increased this figures in 12%, 22%, and 13% respectively, and the 
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use of genomic selection seems to offer some advantages in high selection 

intensity scenarios. 

All predictive ability measures are based on DPR observations, which are 

approximations to the true breeding values, and therefore, some error is 

expected on the true classification of methods and sets. 

Table 5.5 Rate of animals correctly classified according to their ranking in five 
classes each one containing 20% of the values (Overall), correctly classified in 
the first class (Top 20%), or within the three highest classes (Top 60 %). 
Animals were ranked regarding observed DRPs for four traits and the 
evaluation methods1 used after imputation from 3K, 6K and 50K to 50K and 
HD. 

    3K50K 6K50K 50K50K 3KHD 6KHD 50KHD 

Milk Yied (MY)             
 G-BLUP      
  Overall 0.35 0.36 0.37 0.34 0.34 0.35 
  Top 20% 0.45 0.44 0.48 0.40 0.40 0.40 
   Top 60% 0.77 0.77 0.78 0.75 0.76 0.76 

 R-Boost1      
  Overall 0.33 0.32 0.34 0.34 0.32 0.34 
  Top 20% 0.43 0.43 0.45 0.44 0.43 0.43 
    Top 60% 0.75 0.76 0.78 0.73 0.74 0.76 

Fat Percentage (FP)       
 G-BLUP       
  Overall 0.35 0.35 0.36 0.36 0.36 0.37 
  Top 20% 0.48 0.48 0.49 0.48 0.51 0.49 
   Top 60% 0.76 0.75 0.76 0.75 0.76 0.76 

 R-Boost1       
  Overall 0.43 0.43 0.45 0.44 0.43 0.46 
  Top 20% 0.52 0.57 0.56 0.57 0.56 0.60 
    Top 60% 0.82 0.83 0.84 0.82 0.83 0.84 

Somatic Cell Count (SCC)      
 G-BLUP       
  Overall 0.31 0.31 0.32 0.30 0.31 0.32 
  Top 20% 0.42 0.41 0.42 0.50 0.39 0.55 
   Top 60% 0.71 0.71 0.72 0.68 0.72 0.68 

 R-Boost1      
  Overall 0.32 0.33 0.34 0.32 0.35 0.32 
  Top 20% 0.39 0.41 0.39 0.39 0.42 0.42 
    Top 60% 0.71 0.71 0.72 0.71 0.73 0.73 
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    3K50K 6K50K 50K50K 3KHD 
Days Open (DO)       
 G-BLUP       
  Overall 0.23 0.21 0.22 0.25 0.24 0.23 
  Top 20% 0.28 0.28 0.28 0.33 0.33 0.28 
   Top 60% 0.67 0.69 0.65 0.67 0.67 0.67 

 R-Boost1       
  Overall 0.22 0.26 0.23 0.22 0.25 0.27 
  Top 20% 0.23 0.30 0.30 0.28 0.23 0.30 
    Top 60% 0.67 0.65 0.64 0.65 0.67 0.67 
In bold: The preferred method within trait and set criteria for the correct classification of bulls (overall), 
correct classification in the first class (Top 20%) or within three top classes (Top 60%) 
1Method: G-BLUP (Genomic BLUP); R-Boost (Random Boosting) 

Conclusions 

The Beagle software was efficient for the reconstruction of 50K 

genotypes from low density chips and also for imputation to HD, even 

with a small HD reference population.  

Genomic evaluation methods (R-Boost and G-BLUP) resulted in 

similar prediction ability for the traits and genotypes included in this 

study. R-Boost showed clearly better performance for traits regulated 

for major genes.  

Genotypes in 3K density showed worse imputation accuracy 

performance but only slightly worse predictive ability. In general, 

genotypes imputed from LD presented similar predictive ability to that 

from the original 50K genotypes. However, imputation to HD showed 

2% smaller MSE of yet-to-be observed DPR, providing an interesting 

alternative to reduce bias of predictions. Low density genotyping and 

posterior imputation is an interesting approach to reduce genotyping 

costs for pre-selection of young candidates and on-farm decisions, as 
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no remarkable lack on selection efficiency is caused during the 

imputation process. Genomic-based mating programs could benefit 

also from imputed genotypes.  

Selection efficiency could be slightly enhanced for certain traits like 

FP, SCC or DO, especially when the aim of the evaluation is to detect 

top animals in the population. Genetic evaluation units may consider a 

trait dependent strategy in terms of method and genotype density for 

their utilization in the genome-enhanced evaluations. 
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Dairy cattle markets are changing since high reliable breeding values can be 

obtained early in the animal’s life using GS, with no need of own or close 

relatives phenotypes. Therefore, genetic gains of properly designed genomic 

programs largely overcome traditional approaches.  

The field implementation of genomic selection firstly affects AI centers with 

regards to selection of candidates for progeny testing. GS is expected to 

increase reliability of predictions regarding traditional PI. Further, marketing 

genomic candidates yet to be progeny proved, would be a new product in the 

portfolio offered by AI companies.  

Then, GS was also beneficial for commercial farms. More reliable Young 

bulls with genome-based evaluations replace those still to be proven based 

on PI. Young bulls may have outstanding breeding values and due to their 

reliabilities should be marketed at lower prices than top proven bulls. The 

use of sets of 4-6 young bulls should be a recommended strategy to avoid 

risks due to lower reliability. 

Most of the programs have some restrictions about the rights for obtaining 

genomic breeding values of males, but this situation could be modified in the 

near future, so that some farmers can keep some extra benefits from bulls 

born on their farms. 

Replacement and culling decisions could be done more accurately if females 

are genotyped. In addition, selection of bull dams could be done in a fairer 

situation than previously. 

In summary, this new technology could be greatly beneficial for actors using 

it properly. 
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The results in this thesis suggest that female genotypes are valuable as RP. If 

females are genotyped, predictive ability depends largely on the genotyping 

strategy. Genotyping just the top ranking cows as reference result in poor 

results. However, predictive ability is notably enhanced if cows in the 

opposite tail of the distribution are also included. 

The Spanish genomic population had more than 1600 highly reliable proven 

bulls. This number seemed insufficient to obtain accurate genomic 

predictions to allow exploiting the fully potential of GS. Therefore, it was 

necessary to increment the size of the RP with new animals. Before joining 

the Eurogenomics consortium, a measure that solved the problem for the 

Spanish population, different options had to be evaluated to obtain 

information about interesting animals. Different exchange conventions and 

strategic alliances were planned with the aim to share this valuable data. The 

exchange of genomic information is needed, but also genetic values or 

phenotypic information associated with the genotypes must be shared. Both 

sources of information are required to obtain future predictions. 

The first objective of the thesis was to evaluate different genotyping 

strategies based on simulated data in the context of a limited proven bull 

population. To increase the size of the RP the suggested alternative to that 

was the use of genotyped females as a complementary option independent 

from the exchange of genotypes with other counties. It must be noted that 

phenotypic records from females are more affected by environmental 

factors, but despite the fact they can be corrected by statistical methods, 

probably estimates of genomic values will be less reliable. On the other hand 

we must not underestimate the potential of these phenotypes because they 

are the best source of direct information about the genotypes. Therefore, 

females should be taken into account, not only as complement to the 

information provided by bulls, but probably in the future as members of the 

RP. Results from this thesis showed that predictions from a RP built with 
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females from the two tails of the distribution over-performed accuracies 

from a male RP. That information allows the option of genotyping females 

as RP. It is possible to increase accuracy of genomic evaluation for those 

populations with a limited number of highly reliable progeny tested sires. 

However the implementation of genomic evaluations from a two tailed RP 

pases certain difficulties of application:  

Good farming recording scheme is a mandatory pre-requisite, as well as the 

definition of selection criteria for the two tails. Our simulation dealt with two 

different heritability traits but in a single trait design. Today’s dairy cattle 

selection is based on multi-trait evaluation. Genotyping a different RP for 

each trait does not seem possible in the current scenario of chip prices. In 

contrast it could be created a divergent RP respect to a combined index or 

the most interesting traits. 

Females from the two tails of the predicted distribution may be highly 

influenced by environmental conditions that distort their breeding values. 

For that reason, a prior filtering and a deep understanding of the industry and 

its production systems are required. Preferential treatments or particular 

stress situations affecting these females should be avoided. There may be a 

disagreement on the genotyping of animals located in the low percentiles of 

the distributions. However, based on the results of this work, it is necessary 

to avoid genotyping of only the best animals as RP. Similar results have 

been published in another simulation study (Ehsani et al., 2010). These 

works showed the importance of considering animals with poor performance 

and in the extreme of the distribution that is opposite to that selected 

individuals. The inclusion of these animals improved results observed above 

random genotyping regarding predictive ability. Data recording of these 

animals and genotyping costs may be justified by the significant 

improvement in the accuracy of the evaluations and the benefits for the rest 

of the population. 
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In a recent study, Boligon et al. (2012) carried out a comparable simulation 

to that detailed in Chapter 2. They used similar genotyping strategies 

including a 0.5 heritability trait, different selection intensities and a scenario 

were genotyping strategies were applied to an indicator trait. Results were 

evaluated for a target trait, with the genetic correlation between the two traits 

set to 0.50. Their result agreed with the results of this thesis, genotyping 

strategies based on one tail of the distribution resulted in low prediction 

ability. Also, extreme animals in both tails of the distribution, were the most 

informative when training GS models. This was the best strategy for 

obtaining the highest correlation between genomic predictions and simulated 

true breeding values for a correlated trait, but it was not the best strategy in 

terms of mean squared error that is considered a more complet comparison. 

Their simulations our results provide a wide range of scenarios of trait 

heritability, dependent variable, generations of selection, selection intensity 

and selection on correlated traits. However, the ranking of performance of 

the selective genotyping strategies was consistent across studies and should 

be maintained across a wide range of scenarios.  

Studies based on simulations offer the advantage of modeling different 

scenarios in fully controlled situations and help to take decisions with a 

greater degree of confidence in cases where there is no real data available. 

We must take into account the limitations of the simulations when drawing 

conclusions. 

Results from this thesis are of relevance to other small populations or those 

with a limited number of highly reliable individuals. For example, in beef 

cattle, it is almost unfeasible to achieve reasonable reliabilities for young 

animals for carcass traits. Such traits are generally expressed late in life, 

require slaughtering the animals, and incur a high cost of measurement. In 

such cases, it is possible to use marker information from a set of animals in 

previous generations to predict performance in the next generation. The 
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results of this study show that the predictive ability of breeding values will 

depend, among other factors, on which animals are genotyped in the RP. 

After genotyping the RP, development of methods that are able to deal with 

high-density markers was required. Therefore, the second objective of this 

thesis was the development of a reliable genomic evaluation in terms of 

prediction accuracy, computational efficiency and also flexible for further 

future developments. 

Descriptions of the genomic structure showed that the Spanish population is 

similar to other Holstein dairy cattle populations in terms of MAF, Linkage 

disequilibrium and heterozygosity, as expected (Wiggans et al., 2009a; 

Banos and Coffey, 2010; Habier et al., 2010). Based on this similarity, 

genomic evaluations of genotyped animals for recorded traits included in the 

milk recording scheme should be feasible. 

Machine learning algorithms can be used to deal with the curse of 

dimensionality, and computational limitations when a large number of 

individuals have genotypic information. This thesis describes the R-Boost 

algorithm which was compared with B-LASSO, Bayes-A and G-BLUP in 

terms of accuracy, bias and MSE. 

B-LASSO provided the highest Pearson correlations averaged across traits. 

However, differences in accuracy between methods were small, with the 

exception of FP where R-Boost achieved greatest accuracy. There were no 

relevant differences between R-Boost and the additive models based on 

marker regression, except for FP. Although machine learning techniques are 

expected to accommodate cryptic relationships in the data, the use of 

dependent variables that represent previously computed (additive, linear and 

smoothed) sire EBVs could mask such differences. R-Boost seems to 

provide some advantages over Bayesian regression when a small number of 
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QTL regulate the trait under purely additive action (González-Recio and 

Forni, 2011). 

When the genomic predictions of young bulls are compared with those of 

highly reliable, progeny-tested bulls, biases from genomic predictions must 

be taken into account. The DGV of bulls in the testing set showed an average 

deviation over the realized DRP of 0.08 genetic SD across methods and 

traits. Standardized bias showed greater differences between methods than 

Pearson correlations. R-Boost resulted in nearly unbiased predictions for 

MY and FP and also produced the least bias for PY, whereas B-LASSO, 

produced the least bias in predictions for FY, FP and UD. Bayes-A showed a 

similar bias to R-Boost for PY. G-BLUP tended to provide, more biased 

predictions for all traits, with the exception of UD. 

The coefficients of regressing realized DRP on estimated DGV are 

commonly used as a measure of bias in genomic evaluations. Given the 

model, the expected value for this slope coefficient is unity if evaluations 

predict the actual magnitude of differences between bulls, if the genotyped 

young bulls are a representative sample of the bulls in the population. 

However, the genotyped young bulls are typically pre-selected by the AI 

centers based on their EBV or Sire-PI (Mäntysaari et al., 2010). In our study, 

regression coefficients ranged between 0.58 for Bayes-A (MY) and 1.19 for 

the R-Boost (FP). R-Boost provided slope coefficient closest to unity for 

four of the five traits (0.87 for MY, 0.99 for FY, 0.80 for PY and 0.82 for 

UD). These Regression coefficients were within the range reported in other 

studies in similar dairy cattle populations (Olson et al., 2011; Tsuruta et al., 

2011). 

MSE may be a more appropriate comparison criterion than the Pearson 

correlation, as it combines accuracy and bias. R-Boost was the preferred 
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method across traits in terms of MSE providing the smallest MSE on 

average, followed by B-LASSO, Bayes-A, and G-BLUP respectively. 

Based on these results, R-Boost was considered as an efficient method of 

predicting additive genomic breeding values using high-density marker 

information and large data sets. R-Boost predictions resulted especially 

competitive in terms of mean prediction error and coefficient of the 

regression of realized DRP on estimated DGV. In addition, this methodology 

also produces lower MSE estimates. MSE is considered a measurement of 

overall fit of the model to the data, accounting for both accuracy and bias. It 

is recommended when animals with different amount of information are 

compared (Vitezica et al., 2011) as is the case of Dairy Cattle.  

Currently, large numbers of dairy cattle females are being genotyped (Faust 

and Olson, 2012) so there are becoming more representative of the overall 

population than males (Boichard et al., 2012). Under this situation the use of 

proper phenotypes and female genotypes as a main source of genomic 

information will be a reasonable scenario. Flexible prediction methods able 

to deal with complex genetic and environment interactions should be 

valuable. R-Boost is expected to deal with these scenarios properly.  

When the Spanish genomic program joined the Eurogenomics consortium, 

the RP size was increased sizably. Therefore, the evaluation methodology 

should be adapted to the new requirements. A modification of the original 

Boosting algorithm was proposed to speed up computation of genomic 

breeding values, with a minimum impact in predictive ability. This 

modifications included sampling a percentage (mtry) of markers on each 

iteration instead of the whole set and the inclusion of the shrinkage factor (v) 

over the predictions. The original gradient boosting algorithm performed the 

complete genome-assisted evaluation (10-folds) in 171.67 hours with 

v=0.01, 69.17 hours with v=0.10 and 50 hours with v=0.20. The computation 
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time was substantially reduced using the modification of the algorithm with 

mtry =0.01. The smaller times were 1.5, 0.83 and 0.67 hours for mtry=0.01 

and v=0.01, v=0.10 and v=0.20, respectively. These computing times make 

Random boosting feasible for running frequent routine genome-assisted 

evaluations with large data sets without impairing predictive accuracy. The 

choice of mtry and v is under discussion, and cross validation is currently the 

standard procedure. A more formal strategy with statistical properties could 

be studied in the future.  

Cost effectiveness is a key point in genomic selection programs. The use of 

inexpensive low density chips and posterior imputation is an efficient 

strategy for increasing the number of genotypes and therefore, for 

multiplying the benefits of genomics. Accordingly, the third objective of the 

thesis was to implement a flexible and efficient imputation design for 

different density genotypes.  

Imputation performances using BEAGLE from customized LD3K and 

LD6K to 50K density in terms of AER were 3.1% and 1.3%, respectively. 

These results are in accordance with previous studies using similar 

population sizes (Berry and Kearney, 2011; Dassonneville et al., 2012; 

Zhang and Druet, 2010). Regarding imputation from 50K to HD, a small 

number of HD genotypes could be enough for accurate imputation in some 

populations (Schrooten et al., personal communication), despite the fact that 

this accuracy can be enhanced when more HD genotypes are included within 

the range of genotypes used in this study. In a previous pilot study, 

AER(x100) after imputation from 50K to HD was 0.9 when 192 HD bulls 

were used as reference. 

Differences between LD3K and LD6K were more noticeable for imputation 

accuracy than for prediction ability or selection efficiency. In general, 

genotypes imputed from LD performed similarly to those obtained for the 
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animals originally genotyped at 50K in terms of prediction ability. LD 

genotyping and imputation could be an interesting approach in order to 

reduce genotyping costs, as no obvious reduction of selection efficiency is 

produced by the imputation process. Imputation could be useful for pre-

selection of progeny testing candidates, genomic mating programs, or to 

increases the reliability of low heritability traits through the inclusion of 

some of these animals in the RP. In addition, LD chips could allow genomic 

selection programs to be implemented in other species or breeds where it is 

not affordable at current costs.  

Imputation to HD showed similar overall predictive performance to 50K 

evaluations in terms of Pearson correlation, MSE, and regression 

coefficients. However, selection effectiveness could be slightly enhanced for 

certain traits like FP, SCC or DO, especially when the aim of the evaluation 

is to detect top animals in the population. Imputation to HD may be justified 

due to the larger number of actual top bulls identified as selection 

candidates.  

The results in this thesis suggest that genotyping at 6K density does not 

affect future predictive ability and selection decisions, if genotypes were 

previously imputed to 50K. In addition, accurate imputations can be 

performed from 50K to 700K density using small numbers of ultra high 

density genotypes as reference. Those HD imputed genotypes are expected 

to enhance genomic selection in some scenarios using adequate evaluation 

methods. 

Implementation of Spanish genomic program  

This thesis has been developed in parallel with the implementation of the 

Spanish genomic program adapting the objectives of research to the industry 

requirements. 
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The Spanish dairy cattle population is mostly Holstein breed (99%). More 

than 60% of the Holstein cows are already registered in CONAFE (data from 

2011), the national breeders association that includes all regional 

associations. CONAFE is in charge of the basic recording scheme that 

includes 26 traits included in the national genetic index (ICO). Also 

CONAFE runs traditional genetic evaluations and is part of Interbull. 

There are four main testing scheme programs ABEREKIN, ASCOL, 

GENETICAL and XENETICA FONTAO reaching 140 progeny tested bulls 

per year. Those bulls are tested all around the country over more than 

400,000 cows. As a result more than 900 bulls have been currently tested in 

Spain. Some of these bulls are nationally and internationally marketed after 

testing. The amount of progeny tested sires was clearly not enough to build a 

RP able to provide reliable predictions. Among other alternatives to 

genotype share, inclusion of females as reference population should be 

evaluated. Within this scenario the thesis was titled “Genomic selection in 

small dairy cattle populations” and the first objective was to study different 

genotyping strategies including females as RP detailed in the Chapter 2 of 

this thesis. 

In the history of genomic selection in dairy cattle, some events were of great 

importance for the future implementation of the national program. The first 

scientific manuscript dealing with methodology was published in 

2001(Meuwissen et al., 2001). The first SNPs assay for dairy cattle was 

marketed in December 2007 (Van Tassell et al., 2008). The first genomic 

evaluation was carried out in the Netherlands in 2006, and the first official 

evaluation in the early 2009 in North America (Wiggans et al., 2009b). 

During this period CONAFE and the national breeding programs realized the 

significance of GS and the necessity to implementing it. 
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The Spanish GS program started in 2011 with an agreement between the 

breeders association and the progeny test programs with the inclusion of a 

scientific partner (INIA) and the support of the Spanish government for the 

genotyping of 2,000 reference bulls. In addition an agreement was signed 

with Xenetica Fontao to become one of the labs performing genotyping. In 

the same year Spain joined the Eurogenomics consortium that shares over 

22,000 genotypes of progeny tested bulls.  

The progeny testing programs provide bull genotypes while CONAFE was 

in charge of phenotyping and controling the process, the scientific partner 

was in charge of the development of genomic evaluation methodology 

including imputation, and reliability estimation of genomic values. The 

studies carried out in this thesis were considered for the implementation of 

the genomic program. The R-Boosting method was developed and 

implemented. Currently, the first official genomic evaluation has been 

carrying out using this algorithm and results have been validated by 

Interbull. The strong reduction in computing requirements achieved by the 

proposed modification of the algorithm allowed use the Eurogenomics 

population as RP efficiently. Computation times per trait averaged 18 hours. 

Beagle was the software selected for routine imputations based on the results 

of this thesis and other pilot studies carried out by the author. Since October 

2012, LD genotypes are monthly imputed to 50K density in a previous step 

to genomic evaluation. LD chips have been used for preselection of young 

bulls by the AI centers but also for the selection of cows and heifers as bull 

dam candidates. 

Since the availability of a large RP of progeny tested bulls, genotyping 

strategies involving females as RP was no longer a priority for primary traits, 

but it could be valuable for the inclusion of new traits in the breeding 

program. The key of a breeding program for an A.I. center is at the selection 
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of future bull dams. Genomics can provide an increase in the number of 

candidate dams and the reliability of their genetic merit. 

First genomic evaluations were carried out for those traits included in the 

Chapter 4 of this thesis and were used for AI centers in September 2011. The 

Eurogenomic population was included in November 2011, and the first 

complete genomic evaluation for those traits included in the Spanish index 

(ICO) was carried out in February 2012. In May 2012 Spanish genomic 

evaluation for protein yield was validated by Interbull. Finally, on November 

30th 2012, the first official genomic evaluations were published on-line by 

CONAFE (http://www.conafe.com/noticias/20121130a.htm). Official 

genomic evaluations were published as GEBV, blending DGV estimated 

using R-Boosting and traditional EBV from traditional evaluations. Weights 

of both sources of information take into account the reliability of the 

breeding value over the reliability of the GEBV. Reliability of the GEBV 

was calculated as the original reliability of the EBV plus reliability gain due 

to genomic predictions. 

Effects of genomics in dairy selection 

Use of young bulls evaluated based on their genomic information 

Genomic selection has modified the dairy cattle market, some progeny 

programs have reduced the number of bulls to approximately one half of the 

number previously tested per year (Spelman et al., 2012). This reduction 

could lead to lower accuracies in the future if the number of recently proven 

sires in the RP decreases (Lillehammer et al., 2011). Bulls entering the 

progeny testing are previously genomically selected from large groups of 

genotyped candidates. 

Those pre-candidates are calves born from elite sires and top pedigree, or 

genotyped cows. In some cases, the number of young bulls sampled 

http://www.conafe.com/noticias/20121130a.htm
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(genotyped) has already increased dramatically, and there is a strong trend 

within breeding companies of purchasing bull dams to ensure 

exclusivity (Dürr and Philipsson, 2012). Other programs have focused on 

genomic selection, and sons of outstanding top genomic young bulls are 

retained. Simulation studies suggest greater genetic response following the 

second strategy (Lillehammer et al., 2010; Pryce and Daetwyler, 2012). 

However, lower relationship between these young bulls and the RP implies 

lower accuracy of DGV. In addition, it must be taken into account that initial 

results have shown that some genomic estimates were over-estimated 

(Spelman et al., 2012). Especially in the case of outstanding genomic values 

of young bulls some shrinkage over the average is expected when new 

information is added. Schefers and Weigel (2012) suggested the use of teams 

of genomic young bulls to avoid the risk of low individual accuracy. 

In some countries such as New Zealand, over 40% of the inseminations are 

made from genomically selected bulls. This proportion is consistent with the 

rate of use of young bulls evaluated based on their genomic information in a 

number of other countries, including Australia and Ireland (Cromie et al., 

2012). In France, a formal progeny test is no longer undertaken and 70% of 

inseminations are currently made from genomically selected young bulls.  It 

is expected that, through time, other dairy breeding schemes will move to 

this scenario once a greater degree of confidence is reached with genomic 

technology. However genomic selection requires strong recording schemes 

to fulfill expectations. Modifying current testing process does not imply to 

avoid data recording but just the opposite. 

Female genotyping 

Some programs decide pre-screening more young bulls instead of elite dam 

(Spelman et al., 2012). However, both paths are used for some programs. For 

instances, Ireland started an initiative in 2012 encouraging farmers, through 
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a slightly reduced cost, to genotype maiden heifers with the view of 

including them in the training population from 2013. Heifers were targeted 

to avoid any possible selection bias since only high producing fertile cows 

remain to later lactations. Some Spanish testing programs routinely search 

top national females as bull dam candidates. To include them in the genomic 

program could be appealing in the near future. As the number of proven 

bulls may be limited in the near future, the potential use of females, with 

their own performance records, to estimate marker effects becomes 

increasingly important, especially in countries with small populations. 

Simulated studies show that the inclusion of female phenotypic and genomic 

information increase the rate of genetic gain, compared with a traditional 

BLUP breeding program. The generation interval of the males also decreases 

(Mc Hugh et al., 2011). 

Genotyped cows provide less biased prediction that can enhance the 

selection of bull dams (Bouquet and Juga). Combined with biotechnological 

techniques as multiple ovulation and embryo transfer (MOET), this 

improvement could be maximized. However, inbreeding rate also increases 

(Pryce et al., 2010).  

It must be noted, dairy cattle genetic market is highly globalize. However, 

only males are routinely compared through MACE by Interbull (Uppsala 

Sweden). Preselection of bull dams are typically based on national 

evaluation, own performances, deeply knowledge of their pedigrees and 

intuition. Currently GS, provides the opportunity to compare objectively 

cows worldwide. This is a great advance due GS.  

Genomic selection in farms 

Selection decisions 
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Based on simulation studies, Weigel et al. (2012) concluded that on 

commercial dairy farms selection and culling decision could be more 

successful using genomic testing especially for selection of heifers. However 

the expected gain depends on selection intensity applied in each farm. 

Genomic selection will be more advantageous for animals with missing or 

incomplete pedigree and also for those farms with lower replacement 

requirements. Up to now, it is not the case of the Spanish dairy cattle 

population. Expected gains for lactating cows that had phenotypes don’t 

clearly reimburse costs of genotyping. Cost effective genotyping strategies 

include pedigree index presorting by traditional parent average and genotype 

the set of heifers were selection should be made. 

To make genomic selection feasible at commercial farm level, genotyping 

costs should be affordable, low density genotypes and imputations as shown 

in Chapter 4 of the thesis should be considered. Reliability of genomic 

values after imputation allows confident selection decisions.  

At farm level, the incomes are based on milk sales. The breeders look for a 

bull that compensates the weakness of the cow to produce a replacement 

heifer. GS could be interesting when the replacement ratio is high and 

breeding decision must be accurate. 

Inbreeding 

Simulation studies showed that genomic breeding programs have the 

potential of decreasing the rate of inbreeding compared with conventional 

selection methods (Daetwyler et al., 2007). However, first results from 

realized performance show that inbreeding is increasing since genomic 

selection is available in Canada (Schenkel, 2012).  

Increases in inbreeding could be minimized through genomic optimal 

contribution selection (De Cara et al., 2011) or mating programs based on 
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optimal selection (gain & inbreeding) and minimum coancestry (Toro and 

Varona, 2010). Female’s genotyping facilitates the identification of the least 

related animals more accurately than the traditional relationship matrix, with 

lower rates of inbreeding associated with the genotyping of a large number 

of females (Mc Hugh et al., 2011).  

Genomic mating programs 

Since genomic evaluations are routinely carried out, the dairy cattle industry 

should optimize the use of this new information. Next challenge in a 

genomic program is to optimize mating programs to maximize genetic gain 

and international competitiveness.  

Traditional matings programs have been an important breeding tool for dairy 

cattle farmers in Spain. For instance the ABEREKIN mating program is run 

for more than 100,000 females per year. Afterward, ASCOL, XENETICA 

FONTAO and CONAFE have developed their own mating programs. 

Genomics mating programs favors finding the ideal sire to mate to a given 

cow (Cole and VanRaden, 2010). To cope with this goal, SNPs effects for a 

given trait and their respective positions need to be estimated or known, 

providing insight of the genomic areas of greater interest. This knowledge 

would allow designing matings with the aim to obtain the interesting 

combinations from the most complementary parents (Weigel and Cowan, 

2009). 

It is possible to conduct genomic evaluations at the chromosome level rather 

than of the whole genome, even by regions within a chromosome. In low 

prolific species, multiple ovulation and embryo transfer programs acquire a 

greater importance to increase the probability of obtaining the desired 

combination for each mating. Currently, “velo-genetics” or “whizzo-

genetics” are not implanted, but they may become a reality soon. This 

programs consist on genotyping embryos or oocites to make the selection on 
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them and increase the genetic response by further reduction of the generation 

interval (Meuwissen, 2003). Other applications of genomic mating program 

include the potential use of dominance and epistatic effects on the 

commercial animals, or the more convenient combination in crossbreeding.  
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In this thesis the fundamental steps for the implementation of a genomic 

selection program in dairy cattle have been studied and Spanish genomic 

reference population has been evaluated. Final conclusions of the thesis are:  

1) Female genotypes are valuables as reference population.  

2) If females are genotyped as reference population, predictive ability 

depends largely on the genotyping strategy.  

3) To genotype just the top ranking cows as reference population 

produce poor predictive ability. 

4) Predictive ability is notably enhanced if cows in the opposite tail of 

the distribution are also included. 

5) Machine learning algorithms can be used to deal with the curse of 

dimensionality, and computational limitations when a large number 

of individuals have genotypic information.  

6) Random-Boosting algorithm is an efficient method to calculate 

additive genomic breeding values using high-density SNP 

information and large data sets.  

7) Random-Boosting predictions resulted especially competitive in 

terms of mean prediction error and coefficient of the regression of 

realized DRP on estimated DGV. In addition, this methodology also 

produces low mean squared error estimates. 

8) The use of less expensive low density chips and posterior imputation 

is an efficient strategy for increase the number of genotypes and 

therefore, multiply the benefits of genomics.  

9) The effect of imputation from 6K to 50K is minimal in terms of 

future predictive ability and selection decisions.  

10) Accurate imputations can be performed from 50K to 700K density 

using small numbers of ultra high density genotypes as reference.  

11) Genotypes imputed to HD enhance genomic selection in some 

scenarios when adequate methods for genomic evaluation are used. 
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In summary, to genotype the most informative animals as reference 

population, predict genomic values using an appropriate methodology in 

terms of prediction ability and exploit the advantages of imputation methods 

are prerequisites to maximize the profitability of a genomic selection 

program in dairy cattle. 
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