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Overview

e Introduction

e Imputation and Multiple imputation
e Genotype imputation

e Aim of the study
e Materials and Simulations

e Methods

e Linear discriminant analysis

e Clustering analysis

e Validation
® Results

e Discussion and Conclusion
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What Is Imputation?

e Is the replacement of a missing or incorrectly
reported item using logical edits or statistical
procedures
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e In other words, Imputation replaces a missing or
Incorrect data item with an “educated guess.”
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Genotype imputation

e Imputation of genotypes at un-typed SNP loci

— Powerful technique for increasing the power of
association studies

— Typed markers in conjunction with catalogs of
SNP variation (e.g. HapMap) = predictors
for SNP not present on the array
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e Challenge: Optimally combining the multi-locus information
from current + multi-locus variation from HapMap
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Genotypes are called with varying uncertainty
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Or using Linkage Disequilibrium between markers !

Marker r}\ fz_\ ;:\
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Markers close together on chromosomes are often
transmitted together, yielding a non-zero
correlation between the alleles.
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Imputation programs are available ...

e IMPUTE
— Developed by Jonathan Marchini
— Nature Genetics, Advance online publication

— http://www.stats.ox.ac.uk/—marchini/#software

e Mach 1.0, Markov Chain Haplotyping

— Developed by Goncalo Abecasis

— http://www.sph.umich.edu/csg/abecasis/MACH/

e BEAGLE 3.3.2

— Developed by Brian L. Browning

— http://faculty.washington.edu/browning/beagle/beagle.html

www.umb.no
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Aim of the study

e Testing the performance of linear discriminant and
clustering analysis in SNP imputation, in 5 different
situations.

1. with different Haplotype block sizes in low Linkage
disequilibrium genome region.

2. with different Haplotype block sizes in High Linkage
disequilibrium genome region.

3. In different levels of Minor allele frequency genome regions
(MAF).

4. In different levels Marker density regions (HD, LD).

5. with different Reference sample sizes (n).

www.umb.no
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Materials and Simulations
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Materials and Simulations

e Many datasets have been simulated for this study (See Tablel)
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Dataset Test Correlation MOAF No. haplotypes  No. SNP
1 No. of SNPs in (LLD) region 0.2 4/; 1000 Vary
2 No. of SNPs in (HLD) region 0.8 49 1000 Vary
3 Minor allele frequency (MAF) 0.2 Vary 1000 10
4 Marker density (MD) Vary 49 1000 10
5 Reference sample size (n) 0.2 10 1000 10

12
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Dataset 1 and 2:

- Simulated to investigate the effect of the different numbers of SNPs
(markers) in each haplotype block in imputation Accuracy rate, in a
regions of low and High linkage disequilibrium.

Test 2: using 10 SNPs

( Test 1: using 5 SNPs \
)
snpl|...[snpdS|snpdG|snpd T sn::MB snpd9|snps0|snpS1|snpb2 |snp53|snpSd [snpbs|. . (snp K
~[Haplotype 1] 2 2 | 1 i1 2 | 7 1| 2 1 1| 1 2
1000 Haplotype Haplotype 2| 1 2 1 1 2 1 7 1 2 2 2 2 1
blocks. 500 as =
a training dataset %
and 500 blocks as }_?
a tested dataset 5
_Haplotypen 2 2] 1 1 2 2 2 7 1 2 1 1 2 1
Figure 2.1: small example to illustrating Dataset 1
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Dataset 3

- Simulated to investigate the effects of Minor allele frequency
(MAF) of un-typed SNPs in imputation accuracy rate.

snp1 |snp2 snp3 |snpd |snp5 [snpb [snp7 |snp8 |snp9 |snpt0

Haplotypetf 2 [ 1 [ 1 [1 |21 ]2]1]1]1

pggl:lﬂﬂhaplotypes,l\f[AF=0.OlﬂHaﬂowpez2 1112012011 (2121212
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part 2: 100 haplotypes, MAF=0.02 -

parts 3,4, 5, 6, 7, 8 and part 9

part 10: 100 haplotypes, MAF=0.49

Haplotypen| 1 [ 1 [2 [2 212 [1]1]2

Figure 2.2: small example to illustrating Dataset 2.
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Dataset 4

e - Simulated to investigate the effects of marker density (MD) in
Imputation accuracy rate.

e - In this case we duplicate the Dataset to 10 different datasets,
each one varied from the others in their correlation between
SNPs, but constants with other parameters.

e - Each dataset Consisted of 1000 haplotype blocks (1000 rows,
500 haplotypes as a training dataset and 500 haplotypes as a
test dataset), with 10 SNPs in each haplotype block and MAF =
0.50.

www.umb.no
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Dataset 5

- Simulated to investigate the effects of reference sample size (n)
In imputation accuracy rate.

- In this case to investigate the effects of reference sample size
(n), we divided our dataset into 9 sup-datasets: 9 training
datasets and 9 test datasets.

Sup-datasets 1: consisted of 100 haplotypes as training-dataset
and the rest 900 haplotypes as test-dataset.

Sup-datasets 2: consisted of 200 haplotypes as training-dataset
and the rest 800 haplotypes as test-dataset.
and so on until the sup-datasets 9

Sup-datasets 9: consisted of 900 haplotypes as training-dataset
and the rest 100 haplotypes as test-dataset.

- Each Test consisted of 1000 haplotypes and 10 SNPs, with
correlation between SNPs = 0.20 and MAF =0.10.

www.umb.no



Overview
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e Methods

o Linear discriminant analysis

17
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Classification
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Sparsification in the Clustering Process

Data

o —1

Similarity Matrix

Feature

Selection
—

Sparsification
——
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Methods

e Linear Discriminant Analysis
— Maximum Likelihood Discriminant Rule.

e Quadratic discriminant analysis (QDA).

e Linear discriminant analysis (LDA, equivalent to FLDA
for K=2).

e Diagnal quadratic discriminant analysis (DQDA).
e Diagnal linear discriminant analysis (DLDA).

— Fisher Linear Discriminant Analysis.

e Clustering Analysis
— Classification and Regression Tree (CART).
— Aggregating & Bagging.
— Nearest Neighbor Classification.

www.umb.no
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Fisher Linear Discriminant Analysis

e In a two-class classification problem, given n samples in a
d-dimensional feature space. nl in class 1 and n2 in class 2.

e Goal: to find a vector w, and project the n samples on the
axis y=w’x, so that the projected samples are well
separated.

Xy

This axis yields better class separability —» {

-
S X4

TTm's axis has a larger distance between means
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Fisher Linear Discriminant Analysis
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Let us assume that any given variables of SNPs (in a
given haplotype block) can be described

by vector X of p characteristics (X1, Xz,..., Xp), that can be
measured (x:=: for major allele and x:= for minor allele).
The linear discriminant analysis procedure finds a linear
combination of the measures (called the linear
discriminant function or LDF), that provides maximum
discrimination between major alleles (class 1 or > m’) and

minor alleles (class 2 or ‘m2’).



Fisher Linear Discriminant Analysis
A YA R R (LDF)

e The LDF classifies X into class 1 if Z > ¢ and into class

2 if Z < c. The vector of coefficients (ay, ay, ..., @p)
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and threshold constant ¢ were derived from the training
set by maximizing the ratio of between-class variation
of z to the within-class variation (Afifi and Azen,
1979)
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Fisher Linear Discriminant Analysis

e And
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® Where m; are the sample mean vectors of
characteristics for class 1 and class 2, respectively; s Is

pooled covariance matrix of characteristics

LS : (Sl +Sz),

nq +n2—2
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Table 3.2.2: Training dataset

Hap. SNP1 SNP2 SNP3 SNP4 SNP5
1 2 1 2 1 1

2 1 1 1 2 2

3 2 2 1 1 2

4 1 1 2 1 1

5 1 1 2 2 2
Table 3.2.3: Test dataset

Hap. SNP1 SNP2 SNP3 SNP4 SNP5
6 1 1 ? 1 2

14 2 2 ? 1 2
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R commands

Ida(SNP3 ~ SNP1 + SNP2 + SNP4 + SNP5, data = Training)
Coefficients of linear discriminants: LD1

SNP1 1.939638e-16

SNP2 -1.718108e+00

SNP4 -1.145405e-01

SNP5 -1.489027e+00

So the LDA model should be

SNP3 ~u+SNP1 (1.939638e-16) +SNP2 (-1.718108e+00) +SNP4 (-
1.145405e-01) + SNP5 (-1.489027e+00) + e

e:. error

Now, in order to identify the missing SNP number 3 in the Test dataset, e.g. haplotype
number 6

predict(DAModel .5, data.frame("SNP1"=1, "SNP2"=1, "SNP4"=1,
"SNP5"=2))

$class

[1] 2

So the SNP3 in haplotype 6 (record no. 6) expected to = 2 (major allele class).

www.umb.no



LDA vs. Logistic Regression

e LDA (Generative model)
— Easier to train, low variance, more efficient if model is correct
— Higher asymptotic error, but converges faster

e Logistic Regression (Discriminative model)

— Ignores marginal density information Pr(X)
— Harder to train, robust to uncertainty about the data generation process
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— Lower asymptotic error, but converges more slowly
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LDA vs. Principal component analysis.

e A tendency in the computer vision community to prefer LDA
over PCA

Because LDA deals directly with discrimination between classes
while PCA does not pay attention to the underlying class
structure.
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Fisher Linear Discriminant Analysis

M.Barnard. The secular variations of skull characters in four
series of eqyptian skulls. Annals of Eugenics, 6.:352-371,
1935,

R.A.Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7:179-188, 1936.
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A. Martinez, A. Kak, "PCA versus LDA" IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 2,
pp. 228-233, 2001.
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Nearest Neighbor

e Based on a measure of distance between observations (e.g.
Euclidean distance or one minus correlation *10).

d(z,y) = llz =yl = V(@ —y) - (r = y) = Q_ (i —3))"?

d(0,P) = Jx2 + 1,2

Figure 3.1 Distance given by the Pythagorean Theorem
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Hierarchical Clustering
e Given training data (X1’ yl), x> (XN , yN)

e Define a distance metric between points in inputs space.
Common measures is Euclidean distance, either by
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Average linkage

° @
— Complete linkage [ @ Q

Single linkage
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Hierarchical Clustering: Comparison
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Average
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Hierarchical Clustering

e Given test point X

e Find the K nearest training inputs X;,..., Xy to X given the
distance metric D (x, xi)
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Hierarchical Clustering: Example
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Hierarchical Clustering: Example

g1.96.97}

1.96}
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Hierarchical Clustering: Example

94, 96,97, 98,99, 910}
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{92.94.99. 910}
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Hierarchical Clustering: Example

“91199193-94195-963 g7,98,99,910}
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{91.92.94,96,97,98,99, 910}
91,96,97}
1:96 }
192.94.90. 010}
{g2,94. 910}
2,94}
{93, 95,95}
= {93,
g8 gr g1 de glo g2 g @
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K-means vs hierarchical clustering

e This method differs from the hierarchical clustering in many
ways. In particular,

- There is no hierarchy, the data are partitioned. You will be

presented only with the final cluster membership for each
case.

- There is no role for the dendrogram in k-means clustering.

« You must supply the number of clusters (k) into which the

data are to be grouped.
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Implementation of Clustering in SNP imputation
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Hap. | SNP1 | SNP2 SNPn | Cluster
1 2 1 1 ?
2 1 1 2 ?
3 2 2 2 ?
4 1 1 1 ?
5 1 1 2 ?

e Note that, the missing SNPs (missing-ness) can also used as a
predictor in a clustering analysis
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Implementation of Clustering in SNP imputation

e Example 3.2 (Clustering using complete linkage and the
Euclidean distance)

e e.g correlation distance between haplotype 1 and haplotype 3:
® d(hy,h3) =[1- cor(hy,h3)]*10
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hap, 0
hap, e’
o D= {dik} & hap3 3 7 0
hap,| 6 5 1o
hap, "10 10 (2) 8 0
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Clustering in SNP imputation

L ] C1(35)1 = Max {d_gj,dgj} = Max {3,10} - 10
® dzsy, = Max {d;,ds;; = 10
® 354 = Max {d5,dssy = 9
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hap, |10 0 (35)[0
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R commands

» hclust(dist (model.matrix(~-1 +
hapl+hapZt+hap3+hapd+haps, Dataset)), method= "complete")

» plot (HClust.1, main= "Cluster Dendrogram for Solution
HClust.1", sub="Method=complete;Distance=euclidian")

» DatasetShclus.label <- assignCluster(model.matrix(~-1 + hapl +
hap2 + hap3 + hapd + hapo, Dataset), Dataset, cutree(HClust.I,
k =3))
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Clustering in SNP imputation

Cluster Dendrogram for Solution HClust.1

r3

Cluster 1

Clu

er 2

Method=complete; Distance=euckdian
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Clustering in SNP imputation
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Hap. | SNP1 | SNP2 SNPn | Cluster
1 2 1 1 1
2 1 1 2 2
3 2 2 2 3
4 1 1 1 2
S 1 1 2 3
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Comparison between the methods LDA and
Clustering

e Ex. Iris Data
— Y: 3 species,

 Iris setosa (red), versicolor (green), and virginica
(blue).

C
=
<
m
0
=
—
Tl
—
Tl
—
m
o
Py
=
—
(&
3
O
®
=
o
=
_|
m
=
w
>
=
o

— X: 2 variables

e Sepal length and width
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Example: Linear discriminant analysis

Iris: LDA

40
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Sepal Width
3o
]
rer yeeveew |

25

20

4.5 50 §5 6.0 65 70 75 8.0

Sepal Length
Reswsitution error =0.2
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Example: Nearest neighbor classifier
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Validation

e The holdout method

e Usually we using 50% training data-set in this study, except in
the last experiment where we measuring the effect of the size
of the training dataset (where we varying the size of the
training dataset (n)).
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4.0 RESULTS

e Figure 1: shows the effects of size of haplotype block (number
of SNPs per haplotype), on imputation accuracy rate (AR) using
low and high linkage disequilibrium dataset (LLD, HLD).
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4.0 RESULTS

e Figure 2: Shows the effects of number of SNPs surrounding
the missing one, in imputation accuracy rate (AR) using low
and high linkage disequilibrium dataset (LLD, HLD).
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4.0 RESULTS

e The effects of Minor allele frequency (MAF): Figure 3.
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4.0 RESULTS

MAF effect

e It seems that AR is much more accurate when MAF is low
compared to when it is high. A lower MAF usually corresponds
to a stronger LD with nearby markers and the recombination
plays a primary role in LD decay (Yu-Fang Pei., 2008).
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4.0 RESULTS

e The effects of marker density (MD)

e Here, we measure the effect of Marker density by varying the
correlation between markers (SNPs).
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4.0 RESULTS

e The effects of reference sample size (n): Figure 5.
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DISCUSSION AND CONCLUSION

e The performance of the elementary imputation methods,
clustering and discrimination is generally good. However, to
compare the performance of each algorithm with the currently
used methods like in MACH, BEAGLE and IMPUTE, more test
experiments are needed to be conducted.

e In low LD region, the clustering-based method can use the
correlation between records instead of the correlation between
markers in the imputation process.

e The Discriminant-based method also can handle numerical and
categorical data simultaneously without rounding-up the results
(which can affect the accuracy of imputation).
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DISCUSSION AND CONCLUSION

e In optimal state of genotype data (in High LD, low MAF, and
high density haplotype blokes) both methods (Clustering and
discrimination) were working efficiently, and the accuracy can
reached 89 %.
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e Results obtained had many similarities with those obtained
both from Discriminant-based imputation and Clustering-based
SNP imputation approaches in similar datasets.
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DISCUSSION AND CONCLUSION

e Finally, searching for a new technique and a new application or
a new demonstration of Discriminant and Clustering analysis
was the main interest of this study because nowadays the
application of the modern statistical techniques such LDA,
Clustering, PCA, PLS... and etc., are so important
considerations in the field of Bioinformatics and Applied
statistic.
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