

Improving genomic prediction by weighted G-BLUP

Guosheng Su, Ole F. Christensen, Luc Janss and Mogens S. Lund

• Bayesian VSM often predict more accurate GEBV than G-BLUP

•G-BLUP has a low computational demand

• Weigted G-BLUP may achieve both

• Various weighting factors for building G-matrix (estimated variance, effect, P-value)

• Find optimal weights and strategy for weighted G-BLUP

- Assessing alternative weighting factors from Bayesian VSM output
- Weighing single markers or intervals
- The time intervals when weights need to be updated.

• 5221 progeny-tested Nordic Holstein bulls genotyped with the 54K chip

- Bulls born after 2004 as validation data (~20%)
- De-regressed proofs (DRP) derived from genetic evaluations in January 2013.
- Traits: milk, fat, protein, fertility and mastitis.

Model comparisons

Unweighted G-BLUP

- G=MDM',
- $m_{ij} = 0 2p_{j,1} 2p_j$ and $2 2p_j$

•
$$d_{jj} = \frac{1}{n_m 2p_j(1-p_j)}$$

Bayesian VSM

• Weighted G-BLUP

- G=MD^{*}M', D^{*}=DT
- T is a diagonal matrix of weights t_{ii} derived from Bayesian VSM
- Weight was standardized to be mean weight=1

Bayesian VSM

 $y = 1\mu + Xq + e$

•
$$\mathbf{x}_{j} = \mathbf{m}_{j} / \sqrt{2 p_{j} (1 - p_{j})}$$

• m_j with element of 0-2 p_j , 1-2 p_j or 2-2 p_j .

•
$$q_j \sim \pi_1 N(0, \sigma_1^2) + \pi_2 N(0, \sigma_2^2) + \pi_3 N(0, \sigma_3^2) + \pi_4 N(0, \sigma_4^2)$$

Weighted G-BLUP

• Weights for G-BLUP from Bayesian VSM

- Posterior variance of SNP effects $(WV_q = \sum_{i=1}^4 \hat{\pi}_i \hat{\sigma}_i^2)$
- Square of posterior mean of SNP effect (Wq²)
- P values from a t-test for SNP effect $WP_q = -\log_{10}(P_{qj})$

• Data used to derive weights

• Bulls born before 2005, 2004, 2002, 2000

• Number of markers in weighted interval

• 1, 5, 10, 30, 50, 70, 100, 150

Unweighted G-BLUP and BVSM

Trait	Reliability			
	G-BLUP	BVSM		
Milk	0.483	0.516		
Fat	0.468	0.508		
Protein	0.462	0.478		
Fertility	0.446	0.451		
Mastitis	0.395	0.404		
Mean	0.451	0.471		

Unweighted G-BLUP and Bayesian VSM

Trait	Reliability		Regression coefficient		
	G-BLUP	BVSM	G-BLUP	BVSM	
Milk	0.483	0.516	0.872	0.878	
Fat	0.468	0.508	0.842	0.830	
Protein	0.462	0.478	0.814	0.817	
Fertility	0.446	0.451	0.980	0.970	
Mastitis	0.395	0.404	0.900	0.902	
Mean	0.451	0.471	0.882	0.879	

Reliability

Weight	M_1	M_10	M_30	M_50	M_100
WVq	0.464	0.467	0.468	0.467	0.466
Wq ²	0.446	0.453	0.456	0.456	0.454
WP _q	0.457	0.459	0.460	0.460	0.459
Mean	0.456	0.459	0.460	0.459	0.458

Regression coefficient of DRP on GEBV

Weight	M_1	M_10	M_30	M_50	M_100
WVq	0.832	0.871	0.878	0.880	0.882
Wq ²	0.761	0.826	0.852	0.867	0.870
WP _q	0.822	0.869	0.879	0.882	0.884
Mean	0.818	0.856	0.867	0.872	0.874

Reliabilities with different intervals of weight calculations

Trait	Years from prediction to weight calculation
-------	---

	0	1	3	5
Milk	0.511	0.511	0.508	0.506
Fat	0.505	0.505	0.508	0.499
Protein	0.472	0.470	0.469	0.467
Fertility	0.449	0.448	0.446	0.445
Mastitis	0.401	0.402	0.403	0.403
Mean	0.468	0.467	0.467	0.464

Conclusions

• Weighted G-BLUP improves the accuracy of genomic prediction

• Posterior variances of marker effects from a Bayesian VSM are appropriate weights

• A common weight on intervals reduces bias

•Weights can be updated once per three years