

Modelling fertility traits under natural mating conditions in beef cattle

C. Meneses. M.J. Carabaño. R. Morales. A. Molina & C. Díaz

<u>INIA. Spain</u>

ASOCIACIÓN NACIONAL DE CRIADORES DE GANADO VACUNO SELECTO DE RAZA RETINTA

Introduction

- ∞ In Spain there are many local breeds (>35)
- So Their selection programs are focused on increasing productivity (kg of weaned calf per cow) through growth traits
- So Official report (MAGRAMA) of fertility warned about low fertility in beef breeds
- So Context: Absence of systematic control
 - Difficult to measure in extensive production
 - Natural mating (scarce use of AI)
 - Farmers assume high fertility of their cows

- One of the most **economically important traits** (Phocas et al., 1998; Urioste et al., 1998; Cammack et al., 2009; Fortes. et al., 2013)

OBJECTIVE

Incorporation of fertility traits in beef cattle selection programs using easy to record data

First approach:

Calving interval 1-2

Material

Data from 2 breedsAvileña-Negra Ibérica

-Retinta

Material

Edits		
Herd in breeding program & ≥ 2 sires		
Cows: Age at first calving	AF	(448-1619 days)
Calving interval from first to second calving	CI ₁₋₂	(289-600 days)

Avileña-Negra Ibérica (ANI)	Retinta (RT)
9383 cows with CI ₁₋₂	5230 cows with CI ₁₋₂
<i>CI</i> ₁₋₂	<i>CI</i> ₁₋₂
409 ± 73 days	453 ± 102 days

Statistical Models

Fertility	=	C.G.	+	Cow	+	Bull (Second mating)	+	e	
	=	Herd-Year-		Age at first calvingAge atInbreeding coefficientInbreeding		Age at mating			Both models
		Season				Inbreeding coefficient			
Fertility CI 1-2				Additive genetic effect		Permanent effect			Model 1
				Additive genetic effect		Permanent effect			Model 2
						Additive genetic effect			

- **Age Dam** at first calving (3 levels : <2.5years. 2.5 ≥ years ≤3. >3 years)
- Age Sire at second mating (6 levels: 1 <2 years . 2 \geq 2 years <3 years . 3 \geq 3 years <4 years . 4 \geq 4 years <5 years .

5 \geq 5 years - <6 years. 6 \geq 6 years)

- Inbreeding coefficients of cows and bulls (tabular method . Thier, 1990)

Another trait

Conception rate at 21 d cycles (max. 7 cycles)

- 1 success / 0 no success
- Product model & Additive model
- Convergence problems

Phenotype difficult to identify Three management systems: Continuous, two season and one season matings

Methods

so Bayesian inference with Markov chain Monte Carlo algorithm

- 1.000.000 iterations
- 500.000 burn-in
- 10 thin

∞ Software TM (Legarra et al., 2008)

Results and discussion

Difference in days between the best and the worst solutions for each effect

	N levels		Solutions Best-Worst (days)					
Effect			Mod	lel 1	Model 2			
	ANI RT		ANI	RT	ANI	RT		
→ HYS	1969	1323	379.82	537.06	390.13	545.54		
Cow Age	3	3	19.96	18.73	19.98	18.81		
Bull Age	6	6	29.31	76.33	30.52	77.66		
Inbreeding coefficient's Dams (days/% inbreeding)			0.16 ± 0.13	0.07 ± 0.23	0.16 ± 0.13	0.06 ± 0.24		
Inbreeding coefficient's Sires (days/% inbreeding)			0.76 ± 0.34	0.85 ± 0.54	0.79 ± 0.35	0.83 ± 0.56		
Bull permanent effect	879	743	149.38	284.44	121.49	229.66		
Cow additive genetic effect	16795	11445	45.67	53.51	42.78	45.15		
Bull additive genetic effect	16795	11445	-	-	49.22	74.30		

Results and discussion

so Genetic parameters

≠ 0???

- ∞ The male component is more relevant than in other studies with AI (Mackinnon et al. 1989)
- Fertility in these populations can be improved through bulls screening
- So There could be bull pathologies and low quality semen which influence reproduction parameteres

⁵⁰ Inbreeding depression: higher in bulls than in cows

Future

∞ More studies

BULLS -Screening

-Pathologies

COWS -Pathologies

-Nutrition (BCS)

-More traits Age at First Calving Conception Rate

Thanks for your attention