

GMACE – PILOT #4 ADJUSTING THE NATIONAL RELIABILITY INPUT DATA

P.G. Sullivan¹ and J.H. Jakobsen²

¹CDN, Guelph, Canada ²Interbull Centre, Uppsala, Sweden

Objectives

- Predict national genomic reliabilities (N):
 - N = f(trait, reference pop'n, methods)
- Apply GMACE using different sets of national reliability input data:
 - National reliabilities as provided by countries
 - > Predicted reliabilities from f()

Data

December 2013 implementation run

GEBV from 11 evaluation centres

- A. [CAN, GBR, ITA, USA] ... Share genotypes
- [DEU, DFS, FRA, NLD] ... Share genotypes Β.
- C. [AUS] [CHR] [POL]

37 of the 38 MACE traits

Production: Protein (pro), ... Conformation: Stature (sta), ... Udder Health: SCS, Clinical Mastitis (scs, mas) Longevity: (dlo), ... Calving: Direct Stillbirth (dsb), ... Fertility: Cow Conception 1 (cc1), ... Workability: (msp)

 Exponential transformation of Reliability (N) creates a linear relationship with genomic reference population size:

 $exp(N)=Trait + b_1L + b_2F + M + e$

- $L = \sum Rel(EBV) \dots Local bulls$
- $F = \sum Rel(MACE) \dots$ Foreign bulls
- M = SNP panels used, imputations, %polygenic, SNPs evaluated, EBV-DGV blending, ...

 Exponential transformation of Reliability (N) creates a linear relationship with genomic reference population size:

 $exp(N)=Trait + b_1L + b_2F + M + e$ $exp(N) = (Trait + b_1L + b_2F) + E$

 M = SNP panels used, imputations, %polygenic, SNPs evaluated, EBV-DGV blending, ...

Exponential transformation of Reliability (N)

 $exp(N)=Trait + b_1L + b_2F + M + e$ $exp(N) = (Trait + b_1L + b_2F) + E$

 M = SNP panels used, imputations, %polygenic, SNPs evaluated, EBV-DGV blending, ...

Methods – Predicting Reliability

• Exponential transformation of Reliability (N)

 $exp(N)=Trait + b_1L + b_2F + M + e$ $exp(N) = (Trait + b_1L + b_2F) + E$

- $P = predicted N = log(Trait + b_1L + b_2F)$
- P eliminates E = (M + e)... but we want to keep
 M and eliminate only the e portion of E.
- M = SNP panels used, imputations, %polygenic, SNPs evaluated, EBV-DGV blending, ...

 $\exp(N) = (\text{Trait} + b_1 L + b_2 F) + E$

 $P = predicted N = log(Trait + b_1L + b_2F)$

- P eliminates E = (M + e)... but we want to keep
 M and eliminate only the e portion of E.
- Assuming national evaluation centres do a good job of approximating N, then we can include M by finding an (optimum?) intermediate value between P and N, for example:

P.25 = 0.25 * P + 0.75 * N

P.5 = 0.50 * P + 0.50 * N

P.75 = 0.75 * P + 0.25 * N

Somatic Cell Score

Cow Conception I

Direct Stillbirth

Observations

• Re-genotyping foreign bulls locally

National genomic reliability will be higher than GMACE reliability for bulls with GEBV in only 1 or 2 foreign countries (on average)

➢GMACE reliability will be higher than national if bulls have GEBV in many foreign countries

After the bull is genotyped locally

GMACE reliability will increase and always be equal or higher than the national reliability

Same pattern with P.5 versus N

Acknowledgements

GMACE working group National evaluation centers

Thymine (Yellow) = T	Guanine (Green) = G
Adenine (Blue) = A	Cytosine (Red) = C