

#### Index for Mastitis Resistance and Use of BHBA for Evaluation of Health Traits in Canadian Holsteins

Filippo Miglior<sup>1,2</sup>, Astrid Koeck<sup>2</sup>, Janusz Jamrozik<sup>1</sup>, Flavio Schenkel<sup>2</sup>, David Kelton<sup>3</sup>, Gerrit Kistemaker<sup>1</sup>, and Brian Van Doormaal<sup>1</sup>

<sup>1</sup>Canadian Dairy Network, <sup>2</sup>CGIL, University of Guelph, <sup>3</sup>Ontario Veterinary College, University of Guelph





# Genetic evaluation for mastitis resistance

- In August 2014, first official run of genetic evaluations for mastitis resistance
- Multiple-trait linear animal model (Jamrozik et al., 2013)
  - First vs. later parities: clinical mastitis, mean SCS, standard deviation of SCS, excessive test-day SCC
  - First parity cows: udder depth, fore udder attachment, body condition score
- Genetic evaluations expressed as relative breeding values (RBV) with a mean of 100 and a SD of 5 (higher values are desirable)



#### Objective

Development of a Mastitis Resistance Index

Clinical mastitis in first lactation (CM-F)

Clinical mastitis in later lactations (CM-L)

SCS from Canadian Test Day Model



### Why an index?

- Why not using just mastitis EBV?
- Mastitis EBV are indicators of clinical mastitis
- SCS EBV are indicators of subclinical mastitis





#### Boettcher et al., 1998

#### Udder health index

- Subclinical mastitis (measured by SCS) in lactations 1 and ≥2
- ➢ Clinical mastitis in lactations 1 and ≥2
- Milking time
- Estimated economic weights were -\$12, -\$31, -\$15, -\$59 and -\$11, respectively, per genetic standard deviation.
- At that time clinical mastitis was not recorded, thus traits in the selection index were milking speed, udder conformation and SCS in first and later lactations



#### Mastitis Resistance Index

#### Based on the work by Boettcher et al. (1998)

Mastitis Resistance (MR) = 1/3 CM-F + 1/3 CM-L - 1/3 SCS

where;

CM-F = Clinical Mastitis in First lactation CM-L = Clinical Mastitis in Later lactations SCS = overall SCS evaluation as officially published whereby low values are desired



### **Selection response**

#### Assumptions

- Heritability for CM-F, CM-L and SCS = 0.03, 0.05, 0.20, respectively
- Genetic correlations among the three traits: CM-F with CM-L = 0.60 and 0.55 for the other 2 combinations
- Reliability of RBV for MR traits = 0.30, and for SCS = 0.50 (conservative estimates)
- Selection only on Mastitis Resistance (with various combinations/emphasis among 3 traits)



#### **Selection response**

| Weights |      |     | Genetic gain per year<br>(RBV points) |      |      |
|---------|------|-----|---------------------------------------|------|------|
| CM-F    | CM-L | SCS | CM-F                                  | CM-L | SCS  |
| 1/3     | 1/3  | 1/3 | 0.14                                  | 0.19 | 0.44 |
| 0.5     | 0.5  | 0   | 0.13                                  | 0.18 | 0.24 |
| 0       | 0    | 1   | 0.13                                  | 0.17 | 0.63 |
| 1       | 0    | 0   | 0.15                                  | 0.12 | 0.21 |
| 0       | 1    | 0   | 0.11                                  | 0.23 | 0.25 |
| 1/6     | 3/6  | 2/6 | 0.13                                  | 0.20 | 0.44 |
| 0.5     | 0    | 0.5 | 0.15                                  | 0.16 | 0.50 |



#### **Genetic trends**





### Conclusions

- New index for Mastitis Resistance
- Equal weights for CM-F, CM-L and SCS
  - >2/3 on clinical mastitis and 1/3 on SCS
  - > Equal weight between clinical mastitis in first vs. later
- Expressed on RBV scale, mean of 100, SD of 5
  - > Higher value is desirable
  - At least 45 REL with 10 daughters in 10 herds
- Higher accuracy of selection for both clinical and subclinical mastitis





#### Use of BHBA for Evaluation of Health Traits in Canadian Holsteins





## Milk ß-hydroxybutyrate (BHBA)

- Hyperketonemia or ketosis is one of the most frequent diseases in dairy cattle
- Level of milk 
  ß-hydroxybutyrate (BHBA) is an indicator of subclinical ketosis
- Since October 2011 screening for hyperketonemia based on a BHBA analysis by MIR of test-day milk samples is offered in Canada by Valacta



### Objective

 Estimate genetic parameters for milk BHBA in first lactation Holstein cows

 Determine genetic correlations between milk BHBA and metabolic diseases (clinical ketosis and displaced abomasum)



#### Mean milk BHBA





# Proportion (%) of cows with a positive (milk BHBA $\geq$ 0.20 mmol/L) test result





### Analysis of milk BHBA

| Trait                      | DIM    | Records, no. | Mean  |
|----------------------------|--------|--------------|-------|
| BHBA <sub>1</sub> , mmol/L | 5-20   | 20,845       | 0.115 |
| BHBA <sub>2</sub> , mmol/L | 21-40  | 26,871       | 0.094 |
| BHBA <sub>3</sub> , mmol/L | 41-60  | 27,404       | 0.075 |
| BHBA <sub>4</sub> , mmol/L | 61-80  | 27,233       | 0.068 |
| BHBA <sub>5</sub> , mmol/L | 81-100 | 26,811       | 0.067 |



# Heritabilities and genetic correlations

| Trait             | $BHBA_1$ | BHBA <sub>2</sub> | BHBA <sub>3</sub> | BHBA <sub>4</sub> | BHBA <sub>5</sub> |
|-------------------|----------|-------------------|-------------------|-------------------|-------------------|
| BHBA <sub>1</sub> | 0.13     | 0.96              | 0.84              | 0.75              | 0.67              |
| BHBA <sub>2</sub> |          | 0.13              | 0.99              | 0.85              | 0.77              |
| BHBA <sub>3</sub> |          |                   | 0.16              | 0.98              | 0.96              |
| BHBA <sub>4</sub> |          |                   |                   | 0.22              | 0.99              |
| BHBA <sub>5</sub> |          |                   |                   |                   | 0.29              |



## Associations between milk BHBA and metabolic diseases

- Milk BHBA at the first test-day (5-40 DIM)
- Ketosis
- Displaced abomasum

| Trait            | Records, no. | Mean |
|------------------|--------------|------|
| BHBA, mmol/L     | 7,635        | 0.10 |
| KET frequency, % | 3,437        | 3.61 |
| DA frequency, %  | 6,894        | 2.74 |



## Frequency of clinical ketosis and displaced of negative, suspect and positive tested cows





# Heritabilities and genetic correlations

| Trait | BHBA        | KET         | DA          |
|-------|-------------|-------------|-------------|
| BHBA  | 0.13 (0.01) | 0.50 (0.26) | 0.21 (0.16) |
| KET   |             | 0.03 (0.03) | 0.63 (0.43) |
| DA    |             |             | 0.05 (0.02) |



### Conclusions

- Heritabilities for milk BHBA ranging from 0.13 to
   0.29
- Higher milk BHBA in early lactation was genetically associated with a higher frequency of clinical ketosis and displaced abomasum
- Milk BHBA can be routinely analyzed in milk samples on test-days, and, therefore, provide a practical tool for breeding cows with a lower susceptibility to hyperketonemia



#### Summer 2014







